269 lines
9.6 KiB
Python
269 lines
9.6 KiB
Python
|
from dataclasses import asdict, dataclass
|
||
|
from typing import List
|
||
|
|
||
|
from coqpit import Coqpit, check_argument
|
||
|
from trainer import TrainerConfig
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BaseAudioConfig(Coqpit):
|
||
|
"""Base config to definge audio processing parameters. It is used to initialize
|
||
|
```TTS.utils.audio.AudioProcessor.```
|
||
|
|
||
|
Args:
|
||
|
fft_size (int):
|
||
|
Number of STFT frequency levels aka.size of the linear spectogram frame. Defaults to 1024.
|
||
|
|
||
|
win_length (int):
|
||
|
Each frame of audio is windowed by window of length ```win_length``` and then padded with zeros to match
|
||
|
```fft_size```. Defaults to 1024.
|
||
|
|
||
|
hop_length (int):
|
||
|
Number of audio samples between adjacent STFT columns. Defaults to 1024.
|
||
|
|
||
|
frame_shift_ms (int):
|
||
|
Set ```hop_length``` based on milliseconds and sampling rate.
|
||
|
|
||
|
frame_length_ms (int):
|
||
|
Set ```win_length``` based on milliseconds and sampling rate.
|
||
|
|
||
|
stft_pad_mode (str):
|
||
|
Padding method used in STFT. 'reflect' or 'center'. Defaults to 'reflect'.
|
||
|
|
||
|
sample_rate (int):
|
||
|
Audio sampling rate. Defaults to 22050.
|
||
|
|
||
|
resample (bool):
|
||
|
Enable / Disable resampling audio to ```sample_rate```. Defaults to ```False```.
|
||
|
|
||
|
preemphasis (float):
|
||
|
Preemphasis coefficient. Defaults to 0.0.
|
||
|
|
||
|
ref_level_db (int): 20
|
||
|
Reference Db level to rebase the audio signal and ignore the level below. 20Db is assumed the sound of air.
|
||
|
Defaults to 20.
|
||
|
|
||
|
do_sound_norm (bool):
|
||
|
Enable / Disable sound normalization to reconcile the volume differences among samples. Defaults to False.
|
||
|
|
||
|
log_func (str):
|
||
|
Numpy log function used for amplitude to DB conversion. Defaults to 'np.log10'.
|
||
|
|
||
|
do_trim_silence (bool):
|
||
|
Enable / Disable trimming silences at the beginning and the end of the audio clip. Defaults to ```True```.
|
||
|
|
||
|
do_amp_to_db_linear (bool, optional):
|
||
|
enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True.
|
||
|
|
||
|
do_amp_to_db_mel (bool, optional):
|
||
|
enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True.
|
||
|
|
||
|
pitch_fmax (float, optional):
|
||
|
Maximum frequency of the F0 frames. Defaults to ```640```.
|
||
|
|
||
|
pitch_fmin (float, optional):
|
||
|
Minimum frequency of the F0 frames. Defaults to ```1```.
|
||
|
|
||
|
trim_db (int):
|
||
|
Silence threshold used for silence trimming. Defaults to 45.
|
||
|
|
||
|
do_rms_norm (bool, optional):
|
||
|
enable/disable RMS volume normalization when loading an audio file. Defaults to False.
|
||
|
|
||
|
db_level (int, optional):
|
||
|
dB level used for rms normalization. The range is -99 to 0. Defaults to None.
|
||
|
|
||
|
power (float):
|
||
|
Exponent used for expanding spectrogra levels before running Griffin Lim. It helps to reduce the
|
||
|
artifacts in the synthesized voice. Defaults to 1.5.
|
||
|
|
||
|
griffin_lim_iters (int):
|
||
|
Number of Griffing Lim iterations. Defaults to 60.
|
||
|
|
||
|
num_mels (int):
|
||
|
Number of mel-basis frames that defines the frame lengths of each mel-spectrogram frame. Defaults to 80.
|
||
|
|
||
|
mel_fmin (float): Min frequency level used for the mel-basis filters. ~50 for male and ~95 for female voices.
|
||
|
It needs to be adjusted for a dataset. Defaults to 0.
|
||
|
|
||
|
mel_fmax (float):
|
||
|
Max frequency level used for the mel-basis filters. It needs to be adjusted for a dataset.
|
||
|
|
||
|
spec_gain (int):
|
||
|
Gain applied when converting amplitude to DB. Defaults to 20.
|
||
|
|
||
|
signal_norm (bool):
|
||
|
enable/disable signal normalization. Defaults to True.
|
||
|
|
||
|
min_level_db (int):
|
||
|
minimum db threshold for the computed melspectrograms. Defaults to -100.
|
||
|
|
||
|
symmetric_norm (bool):
|
||
|
enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else
|
||
|
[0, k], Defaults to True.
|
||
|
|
||
|
max_norm (float):
|
||
|
```k``` defining the normalization range. Defaults to 4.0.
|
||
|
|
||
|
clip_norm (bool):
|
||
|
enable/disable clipping the our of range values in the normalized audio signal. Defaults to True.
|
||
|
|
||
|
stats_path (str):
|
||
|
Path to the computed stats file. Defaults to None.
|
||
|
"""
|
||
|
|
||
|
# stft parameters
|
||
|
fft_size: int = 1024
|
||
|
win_length: int = 1024
|
||
|
hop_length: int = 256
|
||
|
frame_shift_ms: int = None
|
||
|
frame_length_ms: int = None
|
||
|
stft_pad_mode: str = "reflect"
|
||
|
# audio processing parameters
|
||
|
sample_rate: int = 22050
|
||
|
resample: bool = False
|
||
|
preemphasis: float = 0.0
|
||
|
ref_level_db: int = 20
|
||
|
do_sound_norm: bool = False
|
||
|
log_func: str = "np.log10"
|
||
|
# silence trimming
|
||
|
do_trim_silence: bool = True
|
||
|
trim_db: int = 45
|
||
|
# rms volume normalization
|
||
|
do_rms_norm: bool = False
|
||
|
db_level: float = None
|
||
|
# griffin-lim params
|
||
|
power: float = 1.5
|
||
|
griffin_lim_iters: int = 60
|
||
|
# mel-spec params
|
||
|
num_mels: int = 80
|
||
|
mel_fmin: float = 0.0
|
||
|
mel_fmax: float = None
|
||
|
spec_gain: int = 20
|
||
|
do_amp_to_db_linear: bool = True
|
||
|
do_amp_to_db_mel: bool = True
|
||
|
# f0 params
|
||
|
pitch_fmax: float = 640.0
|
||
|
pitch_fmin: float = 1.0
|
||
|
# normalization params
|
||
|
signal_norm: bool = True
|
||
|
min_level_db: int = -100
|
||
|
symmetric_norm: bool = True
|
||
|
max_norm: float = 4.0
|
||
|
clip_norm: bool = True
|
||
|
stats_path: str = None
|
||
|
|
||
|
def check_values(
|
||
|
self,
|
||
|
):
|
||
|
"""Check config fields"""
|
||
|
c = asdict(self)
|
||
|
check_argument("num_mels", c, restricted=True, min_val=10, max_val=2056)
|
||
|
check_argument("fft_size", c, restricted=True, min_val=128, max_val=4058)
|
||
|
check_argument("sample_rate", c, restricted=True, min_val=512, max_val=100000)
|
||
|
check_argument(
|
||
|
"frame_length_ms",
|
||
|
c,
|
||
|
restricted=True,
|
||
|
min_val=10,
|
||
|
max_val=1000,
|
||
|
alternative="win_length",
|
||
|
)
|
||
|
check_argument("frame_shift_ms", c, restricted=True, min_val=1, max_val=1000, alternative="hop_length")
|
||
|
check_argument("preemphasis", c, restricted=True, min_val=0, max_val=1)
|
||
|
check_argument("min_level_db", c, restricted=True, min_val=-1000, max_val=10)
|
||
|
check_argument("ref_level_db", c, restricted=True, min_val=0, max_val=1000)
|
||
|
check_argument("power", c, restricted=True, min_val=1, max_val=5)
|
||
|
check_argument("griffin_lim_iters", c, restricted=True, min_val=10, max_val=1000)
|
||
|
|
||
|
# normalization parameters
|
||
|
check_argument("signal_norm", c, restricted=True)
|
||
|
check_argument("symmetric_norm", c, restricted=True)
|
||
|
check_argument("max_norm", c, restricted=True, min_val=0.1, max_val=1000)
|
||
|
check_argument("clip_norm", c, restricted=True)
|
||
|
check_argument("mel_fmin", c, restricted=True, min_val=0.0, max_val=1000)
|
||
|
check_argument("mel_fmax", c, restricted=True, min_val=500.0, allow_none=True)
|
||
|
check_argument("spec_gain", c, restricted=True, min_val=1, max_val=100)
|
||
|
check_argument("do_trim_silence", c, restricted=True)
|
||
|
check_argument("trim_db", c, restricted=True)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BaseDatasetConfig(Coqpit):
|
||
|
"""Base config for TTS datasets.
|
||
|
|
||
|
Args:
|
||
|
formatter (str):
|
||
|
Formatter name that defines used formatter in ```TTS.tts.datasets.formatter```. Defaults to `""`.
|
||
|
|
||
|
dataset_name (str):
|
||
|
Unique name for the dataset. Defaults to `""`.
|
||
|
|
||
|
path (str):
|
||
|
Root path to the dataset files. Defaults to `""`.
|
||
|
|
||
|
meta_file_train (str):
|
||
|
Name of the dataset meta file. Or a list of speakers to be ignored at training for multi-speaker datasets.
|
||
|
Defaults to `""`.
|
||
|
|
||
|
ignored_speakers (List):
|
||
|
List of speakers IDs that are not used at the training. Default None.
|
||
|
|
||
|
language (str):
|
||
|
Language code of the dataset. If defined, it overrides `phoneme_language`. Defaults to `""`.
|
||
|
|
||
|
phonemizer (str):
|
||
|
Phonemizer used for that dataset's language. By default it uses `DEF_LANG_TO_PHONEMIZER`. Defaults to `""`.
|
||
|
|
||
|
meta_file_val (str):
|
||
|
Name of the dataset meta file that defines the instances used at validation.
|
||
|
|
||
|
meta_file_attn_mask (str):
|
||
|
Path to the file that lists the attention mask files used with models that require attention masks to
|
||
|
train the duration predictor.
|
||
|
"""
|
||
|
|
||
|
formatter: str = ""
|
||
|
dataset_name: str = ""
|
||
|
path: str = ""
|
||
|
meta_file_train: str = ""
|
||
|
ignored_speakers: List[str] = None
|
||
|
language: str = ""
|
||
|
phonemizer: str = ""
|
||
|
meta_file_val: str = ""
|
||
|
meta_file_attn_mask: str = ""
|
||
|
|
||
|
def check_values(
|
||
|
self,
|
||
|
):
|
||
|
"""Check config fields"""
|
||
|
c = asdict(self)
|
||
|
check_argument("formatter", c, restricted=True)
|
||
|
check_argument("path", c, restricted=True)
|
||
|
check_argument("meta_file_train", c, restricted=True)
|
||
|
check_argument("meta_file_val", c, restricted=False)
|
||
|
check_argument("meta_file_attn_mask", c, restricted=False)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BaseTrainingConfig(TrainerConfig):
|
||
|
"""Base config to define the basic 🐸TTS training parameters that are shared
|
||
|
among all the models. It is based on ```Trainer.TrainingConfig```.
|
||
|
|
||
|
Args:
|
||
|
model (str):
|
||
|
Name of the model that is used in the training.
|
||
|
|
||
|
num_loader_workers (int):
|
||
|
Number of workers for training time dataloader.
|
||
|
|
||
|
num_eval_loader_workers (int):
|
||
|
Number of workers for evaluation time dataloader.
|
||
|
"""
|
||
|
|
||
|
model: str = None
|
||
|
# dataloading
|
||
|
num_loader_workers: int = 0
|
||
|
num_eval_loader_workers: int = 0
|
||
|
use_noise_augment: bool = False
|