100 lines
3.3 KiB
Python
100 lines
3.3 KiB
Python
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
from TTS.encoder.models.base_encoder import BaseEncoder
|
||
|
|
||
|
|
||
|
class LSTMWithProjection(nn.Module):
|
||
|
def __init__(self, input_size, hidden_size, proj_size):
|
||
|
super().__init__()
|
||
|
self.input_size = input_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.proj_size = proj_size
|
||
|
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
|
||
|
self.linear = nn.Linear(hidden_size, proj_size, bias=False)
|
||
|
|
||
|
def forward(self, x):
|
||
|
self.lstm.flatten_parameters()
|
||
|
o, (_, _) = self.lstm(x)
|
||
|
return self.linear(o)
|
||
|
|
||
|
|
||
|
class LSTMWithoutProjection(nn.Module):
|
||
|
def __init__(self, input_dim, lstm_dim, proj_dim, num_lstm_layers):
|
||
|
super().__init__()
|
||
|
self.lstm = nn.LSTM(input_size=input_dim, hidden_size=lstm_dim, num_layers=num_lstm_layers, batch_first=True)
|
||
|
self.linear = nn.Linear(lstm_dim, proj_dim, bias=True)
|
||
|
self.relu = nn.ReLU()
|
||
|
|
||
|
def forward(self, x):
|
||
|
_, (hidden, _) = self.lstm(x)
|
||
|
return self.relu(self.linear(hidden[-1]))
|
||
|
|
||
|
|
||
|
class LSTMSpeakerEncoder(BaseEncoder):
|
||
|
def __init__(
|
||
|
self,
|
||
|
input_dim,
|
||
|
proj_dim=256,
|
||
|
lstm_dim=768,
|
||
|
num_lstm_layers=3,
|
||
|
use_lstm_with_projection=True,
|
||
|
use_torch_spec=False,
|
||
|
audio_config=None,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.use_lstm_with_projection = use_lstm_with_projection
|
||
|
self.use_torch_spec = use_torch_spec
|
||
|
self.audio_config = audio_config
|
||
|
self.proj_dim = proj_dim
|
||
|
|
||
|
layers = []
|
||
|
# choise LSTM layer
|
||
|
if use_lstm_with_projection:
|
||
|
layers.append(LSTMWithProjection(input_dim, lstm_dim, proj_dim))
|
||
|
for _ in range(num_lstm_layers - 1):
|
||
|
layers.append(LSTMWithProjection(proj_dim, lstm_dim, proj_dim))
|
||
|
self.layers = nn.Sequential(*layers)
|
||
|
else:
|
||
|
self.layers = LSTMWithoutProjection(input_dim, lstm_dim, proj_dim, num_lstm_layers)
|
||
|
|
||
|
self.instancenorm = nn.InstanceNorm1d(input_dim)
|
||
|
|
||
|
if self.use_torch_spec:
|
||
|
self.torch_spec = self.get_torch_mel_spectrogram_class(audio_config)
|
||
|
else:
|
||
|
self.torch_spec = None
|
||
|
|
||
|
self._init_layers()
|
||
|
|
||
|
def _init_layers(self):
|
||
|
for name, param in self.layers.named_parameters():
|
||
|
if "bias" in name:
|
||
|
nn.init.constant_(param, 0.0)
|
||
|
elif "weight" in name:
|
||
|
nn.init.xavier_normal_(param)
|
||
|
|
||
|
def forward(self, x, l2_norm=True):
|
||
|
"""Forward pass of the model.
|
||
|
|
||
|
Args:
|
||
|
x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True`
|
||
|
to compute the spectrogram on-the-fly.
|
||
|
l2_norm (bool): Whether to L2-normalize the outputs.
|
||
|
|
||
|
Shapes:
|
||
|
- x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})`
|
||
|
"""
|
||
|
with torch.no_grad():
|
||
|
with torch.cuda.amp.autocast(enabled=False):
|
||
|
if self.use_torch_spec:
|
||
|
x.squeeze_(1)
|
||
|
x = self.torch_spec(x)
|
||
|
x = self.instancenorm(x).transpose(1, 2)
|
||
|
d = self.layers(x)
|
||
|
if self.use_lstm_with_projection:
|
||
|
d = d[:, -1]
|
||
|
if l2_norm:
|
||
|
d = torch.nn.functional.normalize(d, p=2, dim=1)
|
||
|
return d
|