220 lines
8.6 KiB
Python
220 lines
8.6 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright (C) 2020 ATHENA AUTHORS; Yiping Peng; Ne Luo
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
# Only support eager mode and TF>=2.0.0
|
||
|
# pylint: disable=no-member, invalid-name, relative-beyond-top-level
|
||
|
# pylint: disable=too-many-locals, too-many-statements, too-many-arguments, too-many-instance-attributes
|
||
|
""" voxceleb 1 & 2 """
|
||
|
|
||
|
import hashlib
|
||
|
import os
|
||
|
import subprocess
|
||
|
import sys
|
||
|
import zipfile
|
||
|
|
||
|
import pandas
|
||
|
import soundfile as sf
|
||
|
from absl import logging
|
||
|
|
||
|
SUBSETS = {
|
||
|
"vox1_dev_wav": [
|
||
|
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partaa",
|
||
|
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partab",
|
||
|
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partac",
|
||
|
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partad",
|
||
|
],
|
||
|
"vox1_test_wav": ["https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_test_wav.zip"],
|
||
|
"vox2_dev_aac": [
|
||
|
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaa",
|
||
|
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partab",
|
||
|
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partac",
|
||
|
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partad",
|
||
|
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partae",
|
||
|
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaf",
|
||
|
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partag",
|
||
|
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partah",
|
||
|
],
|
||
|
"vox2_test_aac": ["https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_test_aac.zip"],
|
||
|
}
|
||
|
|
||
|
MD5SUM = {
|
||
|
"vox1_dev_wav": "ae63e55b951748cc486645f532ba230b",
|
||
|
"vox2_dev_aac": "bbc063c46078a602ca71605645c2a402",
|
||
|
"vox1_test_wav": "185fdc63c3c739954633d50379a3d102",
|
||
|
"vox2_test_aac": "0d2b3ea430a821c33263b5ea37ede312",
|
||
|
}
|
||
|
|
||
|
USER = {"user": "", "password": ""}
|
||
|
|
||
|
speaker_id_dict = {}
|
||
|
|
||
|
|
||
|
def download_and_extract(directory, subset, urls):
|
||
|
"""Download and extract the given split of dataset.
|
||
|
|
||
|
Args:
|
||
|
directory: the directory where to put the downloaded data.
|
||
|
subset: subset name of the corpus.
|
||
|
urls: the list of urls to download the data file.
|
||
|
"""
|
||
|
os.makedirs(directory, exist_ok=True)
|
||
|
|
||
|
try:
|
||
|
for url in urls:
|
||
|
zip_filepath = os.path.join(directory, url.split("/")[-1])
|
||
|
if os.path.exists(zip_filepath):
|
||
|
continue
|
||
|
logging.info("Downloading %s to %s" % (url, zip_filepath))
|
||
|
subprocess.call(
|
||
|
"wget %s --user %s --password %s -O %s" % (url, USER["user"], USER["password"], zip_filepath),
|
||
|
shell=True,
|
||
|
)
|
||
|
|
||
|
statinfo = os.stat(zip_filepath)
|
||
|
logging.info("Successfully downloaded %s, size(bytes): %d" % (url, statinfo.st_size))
|
||
|
|
||
|
# concatenate all parts into zip files
|
||
|
if ".zip" not in zip_filepath:
|
||
|
zip_filepath = "_".join(zip_filepath.split("_")[:-1])
|
||
|
subprocess.call("cat %s* > %s.zip" % (zip_filepath, zip_filepath), shell=True)
|
||
|
zip_filepath += ".zip"
|
||
|
extract_path = zip_filepath.strip(".zip")
|
||
|
|
||
|
# check zip file md5sum
|
||
|
with open(zip_filepath, "rb") as f_zip:
|
||
|
md5 = hashlib.md5(f_zip.read()).hexdigest()
|
||
|
if md5 != MD5SUM[subset]:
|
||
|
raise ValueError("md5sum of %s mismatch" % zip_filepath)
|
||
|
|
||
|
with zipfile.ZipFile(zip_filepath, "r") as zfile:
|
||
|
zfile.extractall(directory)
|
||
|
extract_path_ori = os.path.join(directory, zfile.infolist()[0].filename)
|
||
|
subprocess.call("mv %s %s" % (extract_path_ori, extract_path), shell=True)
|
||
|
finally:
|
||
|
# os.remove(zip_filepath)
|
||
|
pass
|
||
|
|
||
|
|
||
|
def exec_cmd(cmd):
|
||
|
"""Run a command in a subprocess.
|
||
|
Args:
|
||
|
cmd: command line to be executed.
|
||
|
Return:
|
||
|
int, the return code.
|
||
|
"""
|
||
|
try:
|
||
|
retcode = subprocess.call(cmd, shell=True)
|
||
|
if retcode < 0:
|
||
|
logging.info(f"Child was terminated by signal {retcode}")
|
||
|
except OSError as e:
|
||
|
logging.info(f"Execution failed: {e}")
|
||
|
retcode = -999
|
||
|
return retcode
|
||
|
|
||
|
|
||
|
def decode_aac_with_ffmpeg(aac_file, wav_file):
|
||
|
"""Decode a given AAC file into WAV using ffmpeg.
|
||
|
Args:
|
||
|
aac_file: file path to input AAC file.
|
||
|
wav_file: file path to output WAV file.
|
||
|
Return:
|
||
|
bool, True if success.
|
||
|
"""
|
||
|
cmd = f"ffmpeg -i {aac_file} {wav_file}"
|
||
|
logging.info(f"Decoding aac file using command line: {cmd}")
|
||
|
ret = exec_cmd(cmd)
|
||
|
if ret != 0:
|
||
|
logging.error(f"Failed to decode aac file with retcode {ret}")
|
||
|
logging.error("Please check your ffmpeg installation.")
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
def convert_audio_and_make_label(input_dir, subset, output_dir, output_file):
|
||
|
"""Optionally convert AAC to WAV and make speaker labels.
|
||
|
Args:
|
||
|
input_dir: the directory which holds the input dataset.
|
||
|
subset: the name of the specified subset. e.g. vox1_dev_wav
|
||
|
output_dir: the directory to place the newly generated csv files.
|
||
|
output_file: the name of the newly generated csv file. e.g. vox1_dev_wav.csv
|
||
|
"""
|
||
|
|
||
|
logging.info("Preprocessing audio and label for subset %s" % subset)
|
||
|
source_dir = os.path.join(input_dir, subset)
|
||
|
|
||
|
files = []
|
||
|
# Convert all AAC file into WAV format. At the same time, generate the csv
|
||
|
for root, _, filenames in os.walk(source_dir):
|
||
|
for filename in filenames:
|
||
|
name, ext = os.path.splitext(filename)
|
||
|
if ext.lower() == ".wav":
|
||
|
_, ext2 = os.path.splitext(name)
|
||
|
if ext2:
|
||
|
continue
|
||
|
wav_file = os.path.join(root, filename)
|
||
|
elif ext.lower() == ".m4a":
|
||
|
# Convert AAC to WAV.
|
||
|
aac_file = os.path.join(root, filename)
|
||
|
wav_file = aac_file + ".wav"
|
||
|
if not os.path.exists(wav_file):
|
||
|
if not decode_aac_with_ffmpeg(aac_file, wav_file):
|
||
|
raise RuntimeError("Audio decoding failed.")
|
||
|
else:
|
||
|
continue
|
||
|
speaker_name = root.split(os.path.sep)[-2]
|
||
|
if speaker_name not in speaker_id_dict:
|
||
|
num = len(speaker_id_dict)
|
||
|
speaker_id_dict[speaker_name] = num
|
||
|
# wav_filesize = os.path.getsize(wav_file)
|
||
|
wav_length = len(sf.read(wav_file)[0])
|
||
|
files.append((os.path.abspath(wav_file), wav_length, speaker_id_dict[speaker_name], speaker_name))
|
||
|
|
||
|
# Write to CSV file which contains four columns:
|
||
|
# "wav_filename", "wav_length_ms", "speaker_id", "speaker_name".
|
||
|
csv_file_path = os.path.join(output_dir, output_file)
|
||
|
df = pandas.DataFrame(data=files, columns=["wav_filename", "wav_length_ms", "speaker_id", "speaker_name"])
|
||
|
df.to_csv(csv_file_path, index=False, sep="\t")
|
||
|
logging.info("Successfully generated csv file {}".format(csv_file_path))
|
||
|
|
||
|
|
||
|
def processor(directory, subset, force_process):
|
||
|
"""download and process"""
|
||
|
urls = SUBSETS
|
||
|
if subset not in urls:
|
||
|
raise ValueError(subset, "is not in voxceleb")
|
||
|
|
||
|
subset_csv = os.path.join(directory, subset + ".csv")
|
||
|
if not force_process and os.path.exists(subset_csv):
|
||
|
return subset_csv
|
||
|
|
||
|
logging.info("Downloading and process the voxceleb in %s", directory)
|
||
|
logging.info("Preparing subset %s", subset)
|
||
|
download_and_extract(directory, subset, urls[subset])
|
||
|
convert_audio_and_make_label(directory, subset, directory, subset + ".csv")
|
||
|
logging.info("Finished downloading and processing")
|
||
|
return subset_csv
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
logging.set_verbosity(logging.INFO)
|
||
|
if len(sys.argv) != 4:
|
||
|
print("Usage: python prepare_data.py save_directory user password")
|
||
|
sys.exit()
|
||
|
|
||
|
DIR, USER["user"], USER["password"] = sys.argv[1], sys.argv[2], sys.argv[3]
|
||
|
for SUBSET in SUBSETS:
|
||
|
processor(DIR, SUBSET, False)
|