143 lines
5.7 KiB
Python
143 lines
5.7 KiB
Python
|
"""
|
||
|
Much of this code is adapted from Andrej Karpathy's NanoGPT
|
||
|
(https://github.com/karpathy/nanoGPT)
|
||
|
"""
|
||
|
import math
|
||
|
from dataclasses import dataclass
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
from .model import GPT, MLP, GPTConfig
|
||
|
|
||
|
|
||
|
class NonCausalSelfAttention(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
assert config.n_embd % config.n_head == 0
|
||
|
# key, query, value projections for all heads, but in a batch
|
||
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
||
|
# output projection
|
||
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
||
|
# regularization
|
||
|
self.attn_dropout = nn.Dropout(config.dropout)
|
||
|
self.resid_dropout = nn.Dropout(config.dropout)
|
||
|
self.n_head = config.n_head
|
||
|
self.n_embd = config.n_embd
|
||
|
self.dropout = config.dropout
|
||
|
# flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary
|
||
|
self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") and self.dropout == 0.0
|
||
|
|
||
|
def forward(self, x):
|
||
|
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
||
|
|
||
|
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
||
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
||
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
||
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
||
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
||
|
|
||
|
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
||
|
if self.flash:
|
||
|
# efficient attention using Flash Attention CUDA kernels
|
||
|
y = torch.nn.functional.scaled_dot_product_attention(
|
||
|
q, k, v, attn_mask=None, dropout_p=self.dropout, is_causal=False
|
||
|
)
|
||
|
else:
|
||
|
# manual implementation of attention
|
||
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
||
|
att = F.softmax(att, dim=-1)
|
||
|
att = self.attn_dropout(att)
|
||
|
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
||
|
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
||
|
|
||
|
# output projection
|
||
|
y = self.resid_dropout(self.c_proj(y))
|
||
|
return y
|
||
|
|
||
|
|
||
|
class FineBlock(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.ln_1 = nn.LayerNorm(config.n_embd)
|
||
|
self.attn = NonCausalSelfAttention(config)
|
||
|
self.ln_2 = nn.LayerNorm(config.n_embd)
|
||
|
self.mlp = MLP(config)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = x + self.attn(self.ln_1(x))
|
||
|
x = x + self.mlp(self.ln_2(x))
|
||
|
return x
|
||
|
|
||
|
|
||
|
class FineGPT(GPT):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
del self.lm_head
|
||
|
self.config = config
|
||
|
self.n_codes_total = config.n_codes_total
|
||
|
self.transformer = nn.ModuleDict(
|
||
|
dict(
|
||
|
wtes=nn.ModuleList(
|
||
|
[nn.Embedding(config.input_vocab_size, config.n_embd) for _ in range(config.n_codes_total)]
|
||
|
),
|
||
|
wpe=nn.Embedding(config.block_size, config.n_embd),
|
||
|
drop=nn.Dropout(config.dropout),
|
||
|
h=nn.ModuleList([FineBlock(config) for _ in range(config.n_layer)]),
|
||
|
ln_f=nn.LayerNorm(config.n_embd),
|
||
|
)
|
||
|
)
|
||
|
self.lm_heads = nn.ModuleList(
|
||
|
[
|
||
|
nn.Linear(config.n_embd, config.output_vocab_size, bias=False)
|
||
|
for _ in range(config.n_codes_given, self.n_codes_total)
|
||
|
]
|
||
|
)
|
||
|
for i in range(self.n_codes_total - config.n_codes_given):
|
||
|
self.transformer.wtes[i + 1].weight = self.lm_heads[i].weight
|
||
|
|
||
|
def forward(self, pred_idx, idx):
|
||
|
device = idx.device
|
||
|
b, t, codes = idx.size()
|
||
|
assert (
|
||
|
t <= self.config.block_size
|
||
|
), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
||
|
assert pred_idx > 0, "cannot predict 0th codebook"
|
||
|
assert codes == self.n_codes_total, (b, t, codes)
|
||
|
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
|
||
|
|
||
|
# forward the GPT model itself
|
||
|
tok_embs = [
|
||
|
wte(idx[:, :, i]).unsqueeze(-1) for i, wte in enumerate(self.transformer.wtes)
|
||
|
] # token embeddings of shape (b, t, n_embd)
|
||
|
tok_emb = torch.cat(tok_embs, dim=-1)
|
||
|
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embd)
|
||
|
x = tok_emb[:, :, :, : pred_idx + 1].sum(dim=-1)
|
||
|
x = self.transformer.drop(x + pos_emb)
|
||
|
for block in self.transformer.h:
|
||
|
x = block(x)
|
||
|
x = self.transformer.ln_f(x)
|
||
|
logits = self.lm_heads[pred_idx - self.config.n_codes_given](x)
|
||
|
return logits
|
||
|
|
||
|
def get_num_params(self, non_embedding=True):
|
||
|
"""
|
||
|
Return the number of parameters in the model.
|
||
|
For non-embedding count (default), the position embeddings get subtracted.
|
||
|
The token embeddings would too, except due to the parameter sharing these
|
||
|
params are actually used as weights in the final layer, so we include them.
|
||
|
"""
|
||
|
n_params = sum(p.numel() for p in self.parameters())
|
||
|
if non_embedding:
|
||
|
for wte in self.transformer.wtes:
|
||
|
n_params -= wte.weight.numel()
|
||
|
n_params -= self.transformer.wpe.weight.numel()
|
||
|
return n_params
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class FineGPTConfig(GPTConfig):
|
||
|
n_codes_total: int = 8
|
||
|
n_codes_given: int = 1
|