38 lines
1.1 KiB
Python
38 lines
1.1 KiB
Python
|
import os
|
||
|
|
||
|
import torch
|
||
|
from tokenizers import Tokenizer
|
||
|
|
||
|
from TTS.tts.utils.text.cleaners import english_cleaners
|
||
|
|
||
|
DEFAULT_VOCAB_FILE = os.path.join(
|
||
|
os.path.dirname(os.path.realpath(__file__)), "../../utils/assets/tortoise/tokenizer.json"
|
||
|
)
|
||
|
|
||
|
|
||
|
class VoiceBpeTokenizer:
|
||
|
def __init__(self, vocab_file=DEFAULT_VOCAB_FILE, vocab_str=None):
|
||
|
self.tokenizer = None
|
||
|
if vocab_file is not None:
|
||
|
self.tokenizer = Tokenizer.from_file(vocab_file)
|
||
|
if vocab_str is not None:
|
||
|
self.tokenizer = Tokenizer.from_str(vocab_str)
|
||
|
|
||
|
def preprocess_text(self, txt):
|
||
|
txt = english_cleaners(txt)
|
||
|
return txt
|
||
|
|
||
|
def encode(self, txt):
|
||
|
txt = self.preprocess_text(txt)
|
||
|
txt = txt.replace(" ", "[SPACE]")
|
||
|
return self.tokenizer.encode(txt).ids
|
||
|
|
||
|
def decode(self, seq):
|
||
|
if isinstance(seq, torch.Tensor):
|
||
|
seq = seq.cpu().numpy()
|
||
|
txt = self.tokenizer.decode(seq, skip_special_tokens=False).replace(" ", "")
|
||
|
txt = txt.replace("[SPACE]", " ")
|
||
|
txt = txt.replace("[STOP]", "")
|
||
|
txt = txt.replace("[UNK]", "")
|
||
|
return txt
|