ai-content-maker/.venv/Lib/site-packages/TTS/tts/utils/text/cleaners.py

172 lines
4.5 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""Set of default text cleaners"""
# TODO: pick the cleaner for languages dynamically
import re
from anyascii import anyascii
from TTS.tts.utils.text.chinese_mandarin.numbers import replace_numbers_to_characters_in_text
from .english.abbreviations import abbreviations_en
from .english.number_norm import normalize_numbers as en_normalize_numbers
from .english.time_norm import expand_time_english
from .french.abbreviations import abbreviations_fr
# Regular expression matching whitespace:
_whitespace_re = re.compile(r"\s+")
def expand_abbreviations(text, lang="en"):
if lang == "en":
_abbreviations = abbreviations_en
elif lang == "fr":
_abbreviations = abbreviations_fr
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text).strip()
def convert_to_ascii(text):
return anyascii(text)
def remove_aux_symbols(text):
text = re.sub(r"[\<\>\(\)\[\]\"]+", "", text)
return text
def replace_symbols(text, lang="en"):
"""Replace symbols based on the lenguage tag.
Args:
text:
Input text.
lang:
Lenguage identifier. ex: "en", "fr", "pt", "ca".
Returns:
The modified text
example:
input args:
text: "si l'avi cau, diguem-ho"
lang: "ca"
Output:
text: "si lavi cau, diguemho"
"""
text = text.replace(";", ",")
text = text.replace("-", " ") if lang != "ca" else text.replace("-", "")
text = text.replace(":", ",")
if lang == "en":
text = text.replace("&", " and ")
elif lang == "fr":
text = text.replace("&", " et ")
elif lang == "pt":
text = text.replace("&", " e ")
elif lang == "ca":
text = text.replace("&", " i ")
text = text.replace("'", "")
return text
def basic_cleaners(text):
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
text = lowercase(text)
text = collapse_whitespace(text)
return text
def transliteration_cleaners(text):
"""Pipeline for non-English text that transliterates to ASCII."""
# text = convert_to_ascii(text)
text = lowercase(text)
text = collapse_whitespace(text)
return text
def basic_german_cleaners(text):
"""Pipeline for German text"""
text = lowercase(text)
text = collapse_whitespace(text)
return text
# TODO: elaborate it
def basic_turkish_cleaners(text):
"""Pipeline for Turkish text"""
text = text.replace("I", "ı")
text = lowercase(text)
text = collapse_whitespace(text)
return text
def english_cleaners(text):
"""Pipeline for English text, including number and abbreviation expansion."""
# text = convert_to_ascii(text)
text = lowercase(text)
text = expand_time_english(text)
text = en_normalize_numbers(text)
text = expand_abbreviations(text)
text = replace_symbols(text)
text = remove_aux_symbols(text)
text = collapse_whitespace(text)
return text
def phoneme_cleaners(text):
"""Pipeline for phonemes mode, including number and abbreviation expansion."""
text = en_normalize_numbers(text)
text = expand_abbreviations(text)
text = replace_symbols(text)
text = remove_aux_symbols(text)
text = collapse_whitespace(text)
return text
def french_cleaners(text):
"""Pipeline for French text. There is no need to expand numbers, phonemizer already does that"""
text = expand_abbreviations(text, lang="fr")
text = lowercase(text)
text = replace_symbols(text, lang="fr")
text = remove_aux_symbols(text)
text = collapse_whitespace(text)
return text
def portuguese_cleaners(text):
"""Basic pipeline for Portuguese text. There is no need to expand abbreviation and
numbers, phonemizer already does that"""
text = lowercase(text)
text = replace_symbols(text, lang="pt")
text = remove_aux_symbols(text)
text = collapse_whitespace(text)
return text
def chinese_mandarin_cleaners(text: str) -> str:
"""Basic pipeline for chinese"""
text = replace_numbers_to_characters_in_text(text)
return text
def multilingual_cleaners(text):
"""Pipeline for multilingual text"""
text = lowercase(text)
text = replace_symbols(text, lang=None)
text = remove_aux_symbols(text)
text = collapse_whitespace(text)
return text
def no_cleaners(text):
# remove newline characters
text = text.replace("\n", "")
return text