137 lines
5.8 KiB
Python
137 lines
5.8 KiB
Python
|
from dataclasses import dataclass, field
|
||
|
|
||
|
from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class HifiganConfig(BaseGANVocoderConfig):
|
||
|
"""Defines parameters for FullBand MelGAN vocoder.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> from TTS.vocoder.configs import HifiganConfig
|
||
|
>>> config = HifiganConfig()
|
||
|
|
||
|
Args:
|
||
|
model (str):
|
||
|
Model name used for selecting the right model at initialization. Defaults to `hifigan`.
|
||
|
discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to
|
||
|
'hifigan_discriminator`.
|
||
|
generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is
|
||
|
considered as a generator too. Defaults to `hifigan_generator`.
|
||
|
generator_model_params (dict): Parameters of the generator model. Defaults to
|
||
|
`
|
||
|
{
|
||
|
"upsample_factors": [8, 8, 2, 2],
|
||
|
"upsample_kernel_sizes": [16, 16, 4, 4],
|
||
|
"upsample_initial_channel": 512,
|
||
|
"resblock_kernel_sizes": [3, 7, 11],
|
||
|
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||
|
"resblock_type": "1",
|
||
|
}
|
||
|
`
|
||
|
batch_size (int):
|
||
|
Batch size used at training. Larger values use more memory. Defaults to 16.
|
||
|
seq_len (int):
|
||
|
Audio segment length used at training. Larger values use more memory. Defaults to 8192.
|
||
|
pad_short (int):
|
||
|
Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0.
|
||
|
use_noise_augment (bool):
|
||
|
enable / disable random noise added to the input waveform. The noise is added after computing the
|
||
|
features. Defaults to True.
|
||
|
use_cache (bool):
|
||
|
enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is
|
||
|
not large enough. Defaults to True.
|
||
|
use_stft_loss (bool):
|
||
|
enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True.
|
||
|
use_subband_stft (bool):
|
||
|
enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True.
|
||
|
use_mse_gan_loss (bool):
|
||
|
enable / disable using Mean Squeare Error GAN loss. Defaults to True.
|
||
|
use_hinge_gan_loss (bool):
|
||
|
enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models.
|
||
|
Defaults to False.
|
||
|
use_feat_match_loss (bool):
|
||
|
enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True.
|
||
|
use_l1_spec_loss (bool):
|
||
|
enable / disable using L1 spectrogram loss originally used by HifiGAN model. Defaults to False.
|
||
|
stft_loss_params (dict):
|
||
|
STFT loss parameters. Default to
|
||
|
`{
|
||
|
"n_ffts": [1024, 2048, 512],
|
||
|
"hop_lengths": [120, 240, 50],
|
||
|
"win_lengths": [600, 1200, 240]
|
||
|
}`
|
||
|
l1_spec_loss_params (dict):
|
||
|
L1 spectrogram loss parameters. Default to
|
||
|
`{
|
||
|
"use_mel": True,
|
||
|
"sample_rate": 22050,
|
||
|
"n_fft": 1024,
|
||
|
"hop_length": 256,
|
||
|
"win_length": 1024,
|
||
|
"n_mels": 80,
|
||
|
"mel_fmin": 0.0,
|
||
|
"mel_fmax": None,
|
||
|
}`
|
||
|
stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total
|
||
|
model loss. Defaults to 0.5.
|
||
|
subband_stft_loss_weight (float):
|
||
|
Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0.
|
||
|
mse_G_loss_weight (float):
|
||
|
MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5.
|
||
|
hinge_G_loss_weight (float):
|
||
|
Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0.
|
||
|
feat_match_loss_weight (float):
|
||
|
Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 108.
|
||
|
l1_spec_loss_weight (float):
|
||
|
L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0.
|
||
|
"""
|
||
|
|
||
|
model: str = "hifigan"
|
||
|
# model specific params
|
||
|
discriminator_model: str = "hifigan_discriminator"
|
||
|
generator_model: str = "hifigan_generator"
|
||
|
generator_model_params: dict = field(
|
||
|
default_factory=lambda: {
|
||
|
"upsample_factors": [8, 8, 2, 2],
|
||
|
"upsample_kernel_sizes": [16, 16, 4, 4],
|
||
|
"upsample_initial_channel": 512,
|
||
|
"resblock_kernel_sizes": [3, 7, 11],
|
||
|
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||
|
"resblock_type": "1",
|
||
|
}
|
||
|
)
|
||
|
|
||
|
# LOSS PARAMETERS - overrides
|
||
|
use_stft_loss: bool = False
|
||
|
use_subband_stft_loss: bool = False
|
||
|
use_mse_gan_loss: bool = True
|
||
|
use_hinge_gan_loss: bool = False
|
||
|
use_feat_match_loss: bool = True # requires MelGAN Discriminators (MelGAN and HifiGAN)
|
||
|
use_l1_spec_loss: bool = True
|
||
|
|
||
|
# loss weights - overrides
|
||
|
stft_loss_weight: float = 0
|
||
|
subband_stft_loss_weight: float = 0
|
||
|
mse_G_loss_weight: float = 1
|
||
|
hinge_G_loss_weight: float = 0
|
||
|
feat_match_loss_weight: float = 108
|
||
|
l1_spec_loss_weight: float = 45
|
||
|
l1_spec_loss_params: dict = field(
|
||
|
default_factory=lambda: {
|
||
|
"use_mel": True,
|
||
|
"sample_rate": 22050,
|
||
|
"n_fft": 1024,
|
||
|
"hop_length": 256,
|
||
|
"win_length": 1024,
|
||
|
"n_mels": 80,
|
||
|
"mel_fmin": 0.0,
|
||
|
"mel_fmax": None,
|
||
|
}
|
||
|
)
|
||
|
|
||
|
# optimizer parameters
|
||
|
lr: float = 1e-4
|
||
|
wd: float = 1e-6
|