155 lines
6.3 KiB
Python
155 lines
6.3 KiB
Python
|
import importlib
|
||
|
import re
|
||
|
|
||
|
from coqpit import Coqpit
|
||
|
|
||
|
|
||
|
def to_camel(text):
|
||
|
text = text.capitalize()
|
||
|
return re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text)
|
||
|
|
||
|
|
||
|
def setup_model(config: Coqpit):
|
||
|
"""Load models directly from configuration."""
|
||
|
if "discriminator_model" in config and "generator_model" in config:
|
||
|
MyModel = importlib.import_module("TTS.vocoder.models.gan")
|
||
|
MyModel = getattr(MyModel, "GAN")
|
||
|
else:
|
||
|
MyModel = importlib.import_module("TTS.vocoder.models." + config.model.lower())
|
||
|
if config.model.lower() == "wavernn":
|
||
|
MyModel = getattr(MyModel, "Wavernn")
|
||
|
elif config.model.lower() == "gan":
|
||
|
MyModel = getattr(MyModel, "GAN")
|
||
|
elif config.model.lower() == "wavegrad":
|
||
|
MyModel = getattr(MyModel, "Wavegrad")
|
||
|
else:
|
||
|
try:
|
||
|
MyModel = getattr(MyModel, to_camel(config.model))
|
||
|
except ModuleNotFoundError as e:
|
||
|
raise ValueError(f"Model {config.model} not exist!") from e
|
||
|
print(" > Vocoder Model: {}".format(config.model))
|
||
|
return MyModel.init_from_config(config)
|
||
|
|
||
|
|
||
|
def setup_generator(c):
|
||
|
"""TODO: use config object as arguments"""
|
||
|
print(" > Generator Model: {}".format(c.generator_model))
|
||
|
MyModel = importlib.import_module("TTS.vocoder.models." + c.generator_model.lower())
|
||
|
MyModel = getattr(MyModel, to_camel(c.generator_model))
|
||
|
# this is to preserve the Wavernn class name (instead of Wavernn)
|
||
|
if c.generator_model.lower() in "hifigan_generator":
|
||
|
model = MyModel(in_channels=c.audio["num_mels"], out_channels=1, **c.generator_model_params)
|
||
|
elif c.generator_model.lower() in "melgan_generator":
|
||
|
model = MyModel(
|
||
|
in_channels=c.audio["num_mels"],
|
||
|
out_channels=1,
|
||
|
proj_kernel=7,
|
||
|
base_channels=512,
|
||
|
upsample_factors=c.generator_model_params["upsample_factors"],
|
||
|
res_kernel=3,
|
||
|
num_res_blocks=c.generator_model_params["num_res_blocks"],
|
||
|
)
|
||
|
elif c.generator_model in "melgan_fb_generator":
|
||
|
raise ValueError("melgan_fb_generator is now fullband_melgan_generator")
|
||
|
elif c.generator_model.lower() in "multiband_melgan_generator":
|
||
|
model = MyModel(
|
||
|
in_channels=c.audio["num_mels"],
|
||
|
out_channels=4,
|
||
|
proj_kernel=7,
|
||
|
base_channels=384,
|
||
|
upsample_factors=c.generator_model_params["upsample_factors"],
|
||
|
res_kernel=3,
|
||
|
num_res_blocks=c.generator_model_params["num_res_blocks"],
|
||
|
)
|
||
|
elif c.generator_model.lower() in "fullband_melgan_generator":
|
||
|
model = MyModel(
|
||
|
in_channels=c.audio["num_mels"],
|
||
|
out_channels=1,
|
||
|
proj_kernel=7,
|
||
|
base_channels=512,
|
||
|
upsample_factors=c.generator_model_params["upsample_factors"],
|
||
|
res_kernel=3,
|
||
|
num_res_blocks=c.generator_model_params["num_res_blocks"],
|
||
|
)
|
||
|
elif c.generator_model.lower() in "parallel_wavegan_generator":
|
||
|
model = MyModel(
|
||
|
in_channels=1,
|
||
|
out_channels=1,
|
||
|
kernel_size=3,
|
||
|
num_res_blocks=c.generator_model_params["num_res_blocks"],
|
||
|
stacks=c.generator_model_params["stacks"],
|
||
|
res_channels=64,
|
||
|
gate_channels=128,
|
||
|
skip_channels=64,
|
||
|
aux_channels=c.audio["num_mels"],
|
||
|
dropout=0.0,
|
||
|
bias=True,
|
||
|
use_weight_norm=True,
|
||
|
upsample_factors=c.generator_model_params["upsample_factors"],
|
||
|
)
|
||
|
elif c.generator_model.lower() in "univnet_generator":
|
||
|
model = MyModel(**c.generator_model_params)
|
||
|
else:
|
||
|
raise NotImplementedError(f"Model {c.generator_model} not implemented!")
|
||
|
return model
|
||
|
|
||
|
|
||
|
def setup_discriminator(c):
|
||
|
"""TODO: use config objekt as arguments"""
|
||
|
print(" > Discriminator Model: {}".format(c.discriminator_model))
|
||
|
if "parallel_wavegan" in c.discriminator_model:
|
||
|
MyModel = importlib.import_module("TTS.vocoder.models.parallel_wavegan_discriminator")
|
||
|
else:
|
||
|
MyModel = importlib.import_module("TTS.vocoder.models." + c.discriminator_model.lower())
|
||
|
MyModel = getattr(MyModel, to_camel(c.discriminator_model.lower()))
|
||
|
if c.discriminator_model in "hifigan_discriminator":
|
||
|
model = MyModel()
|
||
|
if c.discriminator_model in "random_window_discriminator":
|
||
|
model = MyModel(
|
||
|
cond_channels=c.audio["num_mels"],
|
||
|
hop_length=c.audio["hop_length"],
|
||
|
uncond_disc_donwsample_factors=c.discriminator_model_params["uncond_disc_donwsample_factors"],
|
||
|
cond_disc_downsample_factors=c.discriminator_model_params["cond_disc_downsample_factors"],
|
||
|
cond_disc_out_channels=c.discriminator_model_params["cond_disc_out_channels"],
|
||
|
window_sizes=c.discriminator_model_params["window_sizes"],
|
||
|
)
|
||
|
if c.discriminator_model in "melgan_multiscale_discriminator":
|
||
|
model = MyModel(
|
||
|
in_channels=1,
|
||
|
out_channels=1,
|
||
|
kernel_sizes=(5, 3),
|
||
|
base_channels=c.discriminator_model_params["base_channels"],
|
||
|
max_channels=c.discriminator_model_params["max_channels"],
|
||
|
downsample_factors=c.discriminator_model_params["downsample_factors"],
|
||
|
)
|
||
|
if c.discriminator_model == "residual_parallel_wavegan_discriminator":
|
||
|
model = MyModel(
|
||
|
in_channels=1,
|
||
|
out_channels=1,
|
||
|
kernel_size=3,
|
||
|
num_layers=c.discriminator_model_params["num_layers"],
|
||
|
stacks=c.discriminator_model_params["stacks"],
|
||
|
res_channels=64,
|
||
|
gate_channels=128,
|
||
|
skip_channels=64,
|
||
|
dropout=0.0,
|
||
|
bias=True,
|
||
|
nonlinear_activation="LeakyReLU",
|
||
|
nonlinear_activation_params={"negative_slope": 0.2},
|
||
|
)
|
||
|
if c.discriminator_model == "parallel_wavegan_discriminator":
|
||
|
model = MyModel(
|
||
|
in_channels=1,
|
||
|
out_channels=1,
|
||
|
kernel_size=3,
|
||
|
num_layers=c.discriminator_model_params["num_layers"],
|
||
|
conv_channels=64,
|
||
|
dilation_factor=1,
|
||
|
nonlinear_activation="LeakyReLU",
|
||
|
nonlinear_activation_params={"negative_slope": 0.2},
|
||
|
bias=True,
|
||
|
)
|
||
|
if c.discriminator_model == "univnet_discriminator":
|
||
|
model = MyModel()
|
||
|
return model
|