218 lines
7.1 KiB
Python
218 lines
7.1 KiB
Python
|
# adopted from https://github.com/jik876/hifi-gan/blob/master/models.py
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
LRELU_SLOPE = 0.1
|
||
|
|
||
|
|
||
|
class DiscriminatorP(torch.nn.Module):
|
||
|
"""HiFiGAN Periodic Discriminator
|
||
|
|
||
|
Takes every Pth value from the input waveform and applied a stack of convoluations.
|
||
|
|
||
|
Note:
|
||
|
if `period` is 2
|
||
|
`waveform = [1, 2, 3, 4, 5, 6 ...] --> [1, 3, 5 ... ] --> convs -> score, feat`
|
||
|
|
||
|
Args:
|
||
|
x (Tensor): input waveform.
|
||
|
|
||
|
Returns:
|
||
|
[Tensor]: discriminator scores per sample in the batch.
|
||
|
[List[Tensor]]: list of features from each convolutional layer.
|
||
|
|
||
|
Shapes:
|
||
|
x: [B, 1, T]
|
||
|
"""
|
||
|
|
||
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||
|
super().__init__()
|
||
|
self.period = period
|
||
|
get_padding = lambda k, d: int((k * d - d) / 2)
|
||
|
norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.parametrizations.weight_norm
|
||
|
self.convs = nn.ModuleList(
|
||
|
[
|
||
|
norm_f(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||
|
norm_f(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||
|
norm_f(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||
|
norm_f(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||
|
norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
||
|
]
|
||
|
)
|
||
|
self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""
|
||
|
Args:
|
||
|
x (Tensor): input waveform.
|
||
|
|
||
|
Returns:
|
||
|
[Tensor]: discriminator scores per sample in the batch.
|
||
|
[List[Tensor]]: list of features from each convolutional layer.
|
||
|
|
||
|
Shapes:
|
||
|
x: [B, 1, T]
|
||
|
"""
|
||
|
feat = []
|
||
|
|
||
|
# 1d to 2d
|
||
|
b, c, t = x.shape
|
||
|
if t % self.period != 0: # pad first
|
||
|
n_pad = self.period - (t % self.period)
|
||
|
x = F.pad(x, (0, n_pad), "reflect")
|
||
|
t = t + n_pad
|
||
|
x = x.view(b, c, t // self.period, self.period)
|
||
|
|
||
|
for l in self.convs:
|
||
|
x = l(x)
|
||
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
||
|
feat.append(x)
|
||
|
x = self.conv_post(x)
|
||
|
feat.append(x)
|
||
|
x = torch.flatten(x, 1, -1)
|
||
|
|
||
|
return x, feat
|
||
|
|
||
|
|
||
|
class MultiPeriodDiscriminator(torch.nn.Module):
|
||
|
"""HiFiGAN Multi-Period Discriminator (MPD)
|
||
|
Wrapper for the `PeriodDiscriminator` to apply it in different periods.
|
||
|
Periods are suggested to be prime numbers to reduce the overlap between each discriminator.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, use_spectral_norm=False):
|
||
|
super().__init__()
|
||
|
self.discriminators = nn.ModuleList(
|
||
|
[
|
||
|
DiscriminatorP(2, use_spectral_norm=use_spectral_norm),
|
||
|
DiscriminatorP(3, use_spectral_norm=use_spectral_norm),
|
||
|
DiscriminatorP(5, use_spectral_norm=use_spectral_norm),
|
||
|
DiscriminatorP(7, use_spectral_norm=use_spectral_norm),
|
||
|
DiscriminatorP(11, use_spectral_norm=use_spectral_norm),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""
|
||
|
Args:
|
||
|
x (Tensor): input waveform.
|
||
|
|
||
|
Returns:
|
||
|
[List[Tensor]]: list of scores from each discriminator.
|
||
|
[List[List[Tensor]]]: list of list of features from each discriminator's each convolutional layer.
|
||
|
|
||
|
Shapes:
|
||
|
x: [B, 1, T]
|
||
|
"""
|
||
|
scores = []
|
||
|
feats = []
|
||
|
for _, d in enumerate(self.discriminators):
|
||
|
score, feat = d(x)
|
||
|
scores.append(score)
|
||
|
feats.append(feat)
|
||
|
return scores, feats
|
||
|
|
||
|
|
||
|
class DiscriminatorS(torch.nn.Module):
|
||
|
"""HiFiGAN Scale Discriminator.
|
||
|
It is similar to `MelganDiscriminator` but with a specific architecture explained in the paper.
|
||
|
|
||
|
Args:
|
||
|
use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, use_spectral_norm=False):
|
||
|
super().__init__()
|
||
|
norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.parametrizations.weight_norm
|
||
|
self.convs = nn.ModuleList(
|
||
|
[
|
||
|
norm_f(nn.Conv1d(1, 128, 15, 1, padding=7)),
|
||
|
norm_f(nn.Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
||
|
norm_f(nn.Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
||
|
norm_f(nn.Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
||
|
norm_f(nn.Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
||
|
norm_f(nn.Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
||
|
norm_f(nn.Conv1d(1024, 1024, 5, 1, padding=2)),
|
||
|
]
|
||
|
)
|
||
|
self.conv_post = norm_f(nn.Conv1d(1024, 1, 3, 1, padding=1))
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""
|
||
|
Args:
|
||
|
x (Tensor): input waveform.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: discriminator scores.
|
||
|
List[Tensor]: list of features from the convolutiona layers.
|
||
|
"""
|
||
|
feat = []
|
||
|
for l in self.convs:
|
||
|
x = l(x)
|
||
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
||
|
feat.append(x)
|
||
|
x = self.conv_post(x)
|
||
|
feat.append(x)
|
||
|
x = torch.flatten(x, 1, -1)
|
||
|
return x, feat
|
||
|
|
||
|
|
||
|
class MultiScaleDiscriminator(torch.nn.Module):
|
||
|
"""HiFiGAN Multi-Scale Discriminator.
|
||
|
It is similar to `MultiScaleMelganDiscriminator` but specially tailored for HiFiGAN as in the paper.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self.discriminators = nn.ModuleList(
|
||
|
[
|
||
|
DiscriminatorS(use_spectral_norm=True),
|
||
|
DiscriminatorS(),
|
||
|
DiscriminatorS(),
|
||
|
]
|
||
|
)
|
||
|
self.meanpools = nn.ModuleList([nn.AvgPool1d(4, 2, padding=2), nn.AvgPool1d(4, 2, padding=2)])
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""
|
||
|
Args:
|
||
|
x (Tensor): input waveform.
|
||
|
|
||
|
Returns:
|
||
|
List[Tensor]: discriminator scores.
|
||
|
List[List[Tensor]]: list of list of features from each layers of each discriminator.
|
||
|
"""
|
||
|
scores = []
|
||
|
feats = []
|
||
|
for i, d in enumerate(self.discriminators):
|
||
|
if i != 0:
|
||
|
x = self.meanpools[i - 1](x)
|
||
|
score, feat = d(x)
|
||
|
scores.append(score)
|
||
|
feats.append(feat)
|
||
|
return scores, feats
|
||
|
|
||
|
|
||
|
class HifiganDiscriminator(nn.Module):
|
||
|
"""HiFiGAN discriminator wrapping MPD and MSD."""
|
||
|
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self.mpd = MultiPeriodDiscriminator()
|
||
|
self.msd = MultiScaleDiscriminator()
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""
|
||
|
Args:
|
||
|
x (Tensor): input waveform.
|
||
|
|
||
|
Returns:
|
||
|
List[Tensor]: discriminator scores.
|
||
|
List[List[Tensor]]: list of list of features from each layers of each discriminator.
|
||
|
"""
|
||
|
scores, feats = self.mpd(x)
|
||
|
scores_, feats_ = self.msd(x)
|
||
|
return scores + scores_, feats + feats_
|