322 lines
11 KiB
Plaintext
322 lines
11 KiB
Plaintext
|
Metadata-Version: 2.1
|
||
|
Name: coqpit
|
||
|
Version: 0.0.17
|
||
|
Summary: Simple (maybe too simple), light-weight config management through python data-classes.
|
||
|
Home-page: https://github.com/erogol/coqpit
|
||
|
Author: Eren Gölge
|
||
|
Author-email: egolge@coqui.ai
|
||
|
Project-URL: Tracker, https://github.com/coqui-ai/coqpit/issues
|
||
|
Project-URL: Repository, https://github.com/coqui-ai/coqpit
|
||
|
Project-URL: Discussions, https://github.com/coqui-ai/coqpit/discussions
|
||
|
Classifier: Programming Language :: Python
|
||
|
Classifier: Programming Language :: Python :: 3
|
||
|
Classifier: Development Status :: 4 - Beta
|
||
|
Classifier: Intended Audience :: Developers
|
||
|
Classifier: Operating System :: POSIX :: Linux
|
||
|
Classifier: Operating System :: MacOS
|
||
|
Classifier: Operating System :: Microsoft :: Windows
|
||
|
Requires-Python: >=3.7.0
|
||
|
Description-Content-Type: text/markdown
|
||
|
License-File: LICENSE.txt
|
||
|
Requires-Dist: dataclasses ; python_version == "3.6"
|
||
|
|
||
|
# 👩✈️ Coqpit
|
||
|
|
||
|
[![CI](https://github.com/coqui-ai/coqpit/actions/workflows/main.yml/badge.svg?branch=main)](https://github.com/coqui-ai/coqpit/actions/workflows/main.yml)
|
||
|
|
||
|
Simple, light-weight and no dependency config handling through python data classes with to/from JSON serialization/deserialization.
|
||
|
|
||
|
Currently it is being used by [🐸TTS](https://github.com/coqui-ai/TTS).
|
||
|
## ❔ Why I need this
|
||
|
What I need from a ML configuration library...
|
||
|
|
||
|
1. Fixing a general config schema in Python to guide users about expected values.
|
||
|
|
||
|
Python is good but not universal. Sometimes you train a ML model and use it on a different platform. So, you
|
||
|
need your model configuration file importable by other programming languages.
|
||
|
|
||
|
2. Simple dynamic value and type checking with default values.
|
||
|
|
||
|
If you are a beginner in a ML project, it is hard to guess the right values for your ML experiment. Therefore it is important
|
||
|
to have some default values and know what range and type of input are expected for each field.
|
||
|
|
||
|
4. Ability to decompose large configs.
|
||
|
|
||
|
As you define more fields for the training dataset, data preprocessing, model parameters, etc., your config file tends
|
||
|
to get quite large but in most cases, they can be decomposed, enabling flexibility and readability.
|
||
|
|
||
|
5. Inheritance and nested configurations.
|
||
|
|
||
|
Simply helps to keep configurations consistent and easier to maintain.
|
||
|
|
||
|
6. Ability to override values from the command line when necessary.
|
||
|
|
||
|
For instance, you might need to define a path for your dataset, and this changes for almost every run. Then the user
|
||
|
should be able to override this value easily over the command line.
|
||
|
|
||
|
It also allows easy hyper-parameter search without changing your original code. Basically, you can run different models
|
||
|
with different parameters just using command line arguments.
|
||
|
|
||
|
7. Defining dynamic or conditional config values.
|
||
|
|
||
|
Sometimes you need to define certain values depending on the other values. Using python helps to define the underlying
|
||
|
logic for such config values.
|
||
|
|
||
|
8. No dependencies
|
||
|
|
||
|
You don't want to install a ton of libraries for just configuration management. If you install one, then it
|
||
|
is better to be just native python.
|
||
|
|
||
|
## 🚫 Limitations
|
||
|
- `Union` type dataclass fields cannot be parsed from console arguments due to the type ambiguity.
|
||
|
- `JSON` is the only supported serialization format, although the others can be easily integrated.
|
||
|
- `List`type with multiple item type annotations are not supported. (e.g. `List[int, str]`).
|
||
|
- `dict` fields are parsed from console arguments as JSON str without type checking. (e.g `--val_dict '{"a":10, "b":100}'`).
|
||
|
- `MISSING` fields cannot be avoided when parsing console arguments.
|
||
|
|
||
|
## 🔍 Examples
|
||
|
|
||
|
### 👉 Simple Coqpit
|
||
|
```python
|
||
|
import os
|
||
|
from dataclasses import asdict, dataclass, field
|
||
|
from typing import List, Union
|
||
|
from coqpit import MISSING, Coqpit, check_argument
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SimpleConfig(Coqpit):
|
||
|
val_a: int = 10
|
||
|
val_b: int = None
|
||
|
val_d: float = 10.21
|
||
|
val_c: str = "Coqpit is great!"
|
||
|
# mandatory field
|
||
|
# raise an error when accessing the value if it is not changed. It is a way to define
|
||
|
val_k: int = MISSING
|
||
|
# optional field
|
||
|
val_dict: dict = field(default_factory=lambda: {"val_aa": 10, "val_ss": "This is in a dict."})
|
||
|
# list of list
|
||
|
val_listoflist: List[List] = field(default_factory=lambda: [[1, 2], [3, 4]])
|
||
|
val_listofunion: List[List[Union[str,int]]] = field(default_factory=lambda: [[1, 3], [1, "Hi!"]])
|
||
|
|
||
|
def check_values(
|
||
|
self,
|
||
|
): # you can define explicit constraints on the fields using `check_argument()`
|
||
|
"""Check config fields"""
|
||
|
c = asdict(self)
|
||
|
check_argument("val_a", c, restricted=True, min_val=10, max_val=2056)
|
||
|
check_argument("val_b", c, restricted=True, min_val=128, max_val=4058, allow_none=True)
|
||
|
check_argument("val_c", c, restricted=True)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
file_path = os.path.dirname(os.path.abspath(__file__))
|
||
|
config = SimpleConfig()
|
||
|
|
||
|
# try MISSING class argument
|
||
|
try:
|
||
|
k = config.val_k
|
||
|
except AttributeError:
|
||
|
print(" val_k needs a different value before accessing it.")
|
||
|
config.val_k = 1000
|
||
|
|
||
|
# try serialization and deserialization
|
||
|
print(config.serialize())
|
||
|
print(config.to_json())
|
||
|
config.save_json(os.path.join(file_path, "example_config.json"))
|
||
|
config.load_json(os.path.join(file_path, "example_config.json"))
|
||
|
print(config.pprint())
|
||
|
|
||
|
# try `dict` interface
|
||
|
print(*config)
|
||
|
print(dict(**config))
|
||
|
|
||
|
# value assignment by mapping
|
||
|
config["val_a"] = -999
|
||
|
print(config["val_a"])
|
||
|
assert config.val_a == -999
|
||
|
```
|
||
|
### 👉 Serialization
|
||
|
```python
|
||
|
import os
|
||
|
from dataclasses import asdict, dataclass, field
|
||
|
from coqpit import Coqpit, check_argument
|
||
|
from typing import List, Union
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SimpleConfig(Coqpit):
|
||
|
val_a: int = 10
|
||
|
val_b: int = None
|
||
|
val_c: str = "Coqpit is great!"
|
||
|
|
||
|
def check_values(self,):
|
||
|
'''Check config fields'''
|
||
|
c = asdict(self)
|
||
|
check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
|
||
|
check_argument('val_b', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
|
||
|
check_argument('val_c', c, restricted=True)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class NestedConfig(Coqpit):
|
||
|
val_d: int = 10
|
||
|
val_e: int = None
|
||
|
val_f: str = "Coqpit is great!"
|
||
|
sc_list: List[SimpleConfig] = None
|
||
|
sc: SimpleConfig = SimpleConfig()
|
||
|
union_var: Union[List[SimpleConfig], SimpleConfig] = field(default_factory=lambda: [SimpleConfig(),SimpleConfig()])
|
||
|
|
||
|
def check_values(self,):
|
||
|
'''Check config fields'''
|
||
|
c = asdict(self)
|
||
|
check_argument('val_d', c, restricted=True, min_val=10, max_val=2056)
|
||
|
check_argument('val_e', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
|
||
|
check_argument('val_f', c, restricted=True)
|
||
|
check_argument('sc_list', c, restricted=True, allow_none=True)
|
||
|
check_argument('sc', c, restricted=True, allow_none=True)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
file_path = os.path.dirname(os.path.abspath(__file__))
|
||
|
# init 🐸 dataclass
|
||
|
config = NestedConfig()
|
||
|
|
||
|
# save to a json file
|
||
|
config.save_json(os.path.join(file_path, 'example_config.json'))
|
||
|
# load a json file
|
||
|
config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
|
||
|
# update the config with the json file.
|
||
|
config2.load_json(os.path.join(file_path, 'example_config.json'))
|
||
|
# now they should be having the same values.
|
||
|
assert config == config2
|
||
|
|
||
|
# pretty print the dataclass
|
||
|
print(config.pprint())
|
||
|
|
||
|
# export values to a dict
|
||
|
config_dict = config.to_dict()
|
||
|
# crate a new config with different values than the defaults
|
||
|
config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
|
||
|
# update the config with the exported valuess from the previous config.
|
||
|
config2.from_dict(config_dict)
|
||
|
# now they should be having the same values.
|
||
|
assert config == config2
|
||
|
```
|
||
|
|
||
|
|
||
|
### 👉 ```argparse``` handling and parsing.
|
||
|
```python
|
||
|
import argparse
|
||
|
import os
|
||
|
from dataclasses import asdict, dataclass, field
|
||
|
from typing import List
|
||
|
|
||
|
from coqpit import Coqpit, check_argument
|
||
|
import sys
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SimplerConfig(Coqpit):
|
||
|
val_a: int = field(default=None, metadata={'help': 'this is val_a'})
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SimpleConfig(Coqpit):
|
||
|
val_req: str # required field
|
||
|
val_a: int = field(default=10,
|
||
|
metadata={'help': 'this is val_a of SimpleConfig'})
|
||
|
val_b: int = field(default=None, metadata={'help': 'this is val_b'})
|
||
|
nested_config: SimplerConfig = SimplerConfig()
|
||
|
mylist_with_default: List[SimplerConfig] = field(
|
||
|
default_factory=lambda:
|
||
|
[SimplerConfig(val_a=100),
|
||
|
SimplerConfig(val_a=999)],
|
||
|
metadata={'help': 'list of SimplerConfig'})
|
||
|
|
||
|
# mylist_without_default: List[SimplerConfig] = field(default=None, metadata={'help': 'list of SimplerConfig'}) # NOT SUPPORTED YET!
|
||
|
|
||
|
def check_values(self, ):
|
||
|
'''Check config fields'''
|
||
|
c = asdict(self)
|
||
|
check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
|
||
|
check_argument('val_b',
|
||
|
c,
|
||
|
restricted=True,
|
||
|
min_val=128,
|
||
|
max_val=4058,
|
||
|
allow_none=True)
|
||
|
check_argument('val_req', c, restricted=True)
|
||
|
|
||
|
|
||
|
def main():
|
||
|
# reference config that we like to match with the one parsed from argparse
|
||
|
config_ref = SimpleConfig(val_req='this is different',
|
||
|
val_a=222,
|
||
|
val_b=999,
|
||
|
nested_config=SimplerConfig(val_a=333),
|
||
|
mylist_with_default=[
|
||
|
SimplerConfig(val_a=222),
|
||
|
SimplerConfig(val_a=111)
|
||
|
])
|
||
|
|
||
|
# create new config object from CLI inputs
|
||
|
parsed = SimpleConfig.init_from_argparse()
|
||
|
parsed.pprint()
|
||
|
|
||
|
# check the parsed config with the reference config
|
||
|
assert parsed == config_ref
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
sys.argv.extend(['--coqpit.val_req', 'this is different'])
|
||
|
sys.argv.extend(['--coqpit.val_a', '222'])
|
||
|
sys.argv.extend(['--coqpit.val_b', '999'])
|
||
|
sys.argv.extend(['--coqpit.nested_config.val_a', '333'])
|
||
|
sys.argv.extend(['--coqpit.mylist_with_default.0.val_a', '222'])
|
||
|
sys.argv.extend(['--coqpit.mylist_with_default.1.val_a', '111'])
|
||
|
main()
|
||
|
```
|
||
|
|
||
|
### 🤸♀️ Merging coqpits
|
||
|
```python
|
||
|
import os
|
||
|
from dataclasses import dataclass
|
||
|
from coqpit import Coqpit, check_argument
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CoqpitA(Coqpit):
|
||
|
val_a: int = 10
|
||
|
val_b: int = None
|
||
|
val_d: float = 10.21
|
||
|
val_c: str = "Coqpit is great!"
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CoqpitB(Coqpit):
|
||
|
val_d: int = 25
|
||
|
val_e: int = 257
|
||
|
val_f: float = -10.21
|
||
|
val_g: str = "Coqpit is really great!"
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
file_path = os.path.dirname(os.path.abspath(__file__))
|
||
|
coqpita = CoqpitA()
|
||
|
coqpitb = CoqpitB()
|
||
|
coqpitb.merge(coqpita)
|
||
|
print(coqpitb.val_a)
|
||
|
print(coqpitb.pprint())
|
||
|
```
|
||
|
|
||
|
## Development
|
||
|
|
||
|
Install the pre-commit hook to automatically check your commits for style and hinting issues:
|
||
|
|
||
|
```bash
|
||
|
$ python .pre-commit-2.12.1.pyz install
|
||
|
```
|
||
|
|
||
|
<img src="https://static.scarf.sh/a.png?x-pxid=cd0232a8-ead2-4f1f-87f5-0dd8ec33ee51" />
|