107 lines
3.7 KiB
Python
107 lines
3.7 KiB
Python
|
__author__ = "Alex Rogozhnikov"
|
||
|
|
||
|
from typing import Any, Dict
|
||
|
|
||
|
|
||
|
from ..einops import TransformRecipe, _apply_recipe, _prepare_recipes_for_all_dims, get_backend
|
||
|
from .. import EinopsError
|
||
|
|
||
|
|
||
|
class RearrangeMixin:
|
||
|
"""
|
||
|
Rearrange layer behaves identically to einops.rearrange operation.
|
||
|
|
||
|
:param pattern: str, rearrangement pattern
|
||
|
:param axes_lengths: any additional specification of dimensions
|
||
|
|
||
|
See einops.rearrange for source_examples.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pattern: str, **axes_lengths: Any) -> None:
|
||
|
super().__init__()
|
||
|
self.pattern = pattern
|
||
|
self.axes_lengths = axes_lengths
|
||
|
# self._recipe = self.recipe() # checking parameters
|
||
|
self._multirecipe = self.multirecipe()
|
||
|
self._axes_lengths = tuple(self.axes_lengths.items())
|
||
|
|
||
|
def __repr__(self) -> str:
|
||
|
params = repr(self.pattern)
|
||
|
for axis, length in self.axes_lengths.items():
|
||
|
params += ", {}={}".format(axis, length)
|
||
|
return "{}({})".format(self.__class__.__name__, params)
|
||
|
|
||
|
def multirecipe(self) -> Dict[int, TransformRecipe]:
|
||
|
try:
|
||
|
return _prepare_recipes_for_all_dims(
|
||
|
self.pattern, operation="rearrange", axes_names=tuple(self.axes_lengths)
|
||
|
)
|
||
|
except EinopsError as e:
|
||
|
raise EinopsError(" Error while preparing {!r}\n {}".format(self, e))
|
||
|
|
||
|
def _apply_recipe(self, x):
|
||
|
backend = get_backend(x)
|
||
|
return _apply_recipe(
|
||
|
backend=backend,
|
||
|
recipe=self._multirecipe[len(x.shape)],
|
||
|
tensor=x,
|
||
|
reduction_type="rearrange",
|
||
|
axes_lengths=self._axes_lengths,
|
||
|
)
|
||
|
|
||
|
def __getstate__(self):
|
||
|
return {"pattern": self.pattern, "axes_lengths": self.axes_lengths}
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
self.__init__(pattern=state["pattern"], **state["axes_lengths"])
|
||
|
|
||
|
|
||
|
class ReduceMixin:
|
||
|
"""
|
||
|
Reduce layer behaves identically to einops.reduce operation.
|
||
|
|
||
|
:param pattern: str, rearrangement pattern
|
||
|
:param reduction: one of available reductions ('min', 'max', 'sum', 'mean', 'prod'), case-sensitive
|
||
|
:param axes_lengths: any additional specification of dimensions
|
||
|
|
||
|
See einops.reduce for source_examples.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pattern: str, reduction: str, **axes_lengths: Any):
|
||
|
super().__init__()
|
||
|
self.pattern = pattern
|
||
|
self.reduction = reduction
|
||
|
self.axes_lengths = axes_lengths
|
||
|
self._multirecipe = self.multirecipe()
|
||
|
self._axes_lengths = tuple(self.axes_lengths.items())
|
||
|
|
||
|
def __repr__(self):
|
||
|
params = "{!r}, {!r}".format(self.pattern, self.reduction)
|
||
|
for axis, length in self.axes_lengths.items():
|
||
|
params += ", {}={}".format(axis, length)
|
||
|
return "{}({})".format(self.__class__.__name__, params)
|
||
|
|
||
|
def multirecipe(self) -> Dict[int, TransformRecipe]:
|
||
|
try:
|
||
|
return _prepare_recipes_for_all_dims(
|
||
|
self.pattern, operation=self.reduction, axes_names=tuple(self.axes_lengths)
|
||
|
)
|
||
|
except EinopsError as e:
|
||
|
raise EinopsError(" Error while preparing {!r}\n {}".format(self, e))
|
||
|
|
||
|
def _apply_recipe(self, x):
|
||
|
backend = get_backend(x)
|
||
|
return _apply_recipe(
|
||
|
backend=backend,
|
||
|
recipe=self._multirecipe[len(x.shape)],
|
||
|
tensor=x,
|
||
|
reduction_type=self.reduction,
|
||
|
axes_lengths=self._axes_lengths,
|
||
|
)
|
||
|
|
||
|
def __getstate__(self):
|
||
|
return {"pattern": self.pattern, "reduction": self.reduction, "axes_lengths": self.axes_lengths}
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
self.__init__(pattern=state["pattern"], reduction=state["reduction"], **state["axes_lengths"])
|