ai-content-maker/.venv/Lib/site-packages/einops/layers/flax.py

83 lines
2.5 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
from dataclasses import field
from typing import Optional, Dict, cast
import flax.linen as nn
import jax
import jax.numpy as jnp
from . import RearrangeMixin, ReduceMixin
from ._einmix import _EinmixMixin
__author__ = "Alex Rogozhnikov"
class Reduce(nn.Module):
pattern: str
reduction: str
sizes: dict = field(default_factory=lambda: {})
def setup(self):
self.reducer = ReduceMixin(self.pattern, self.reduction, **self.sizes)
def __call__(self, input):
return self.reducer._apply_recipe(input)
class Rearrange(nn.Module):
pattern: str
sizes: dict = field(default_factory=lambda: {})
def setup(self):
self.rearranger = RearrangeMixin(self.pattern, **self.sizes)
def __call__(self, input):
return self.rearranger._apply_recipe(input)
class EinMix(nn.Module, _EinmixMixin):
pattern: str
weight_shape: str
bias_shape: Optional[str] = None
sizes: dict = field(default_factory=lambda: {})
def setup(self):
self.initialize_einmix(
pattern=self.pattern,
weight_shape=self.weight_shape,
bias_shape=self.bias_shape,
axes_lengths=self.sizes,
)
def _create_parameters(self, weight_shape, weight_bound, bias_shape, bias_bound):
self.weight = self.param("weight", jax.nn.initializers.uniform(weight_bound), weight_shape)
if bias_shape is not None:
self.bias = self.param("bias", jax.nn.initializers.uniform(bias_bound), bias_shape)
else:
self.bias = None
def _create_rearrange_layers(
self,
pre_reshape_pattern: Optional[str],
pre_reshape_lengths: Optional[Dict],
post_reshape_pattern: Optional[str],
post_reshape_lengths: Optional[Dict],
):
self.pre_rearrange = None
if pre_reshape_pattern is not None:
self.pre_rearrange = Rearrange(pre_reshape_pattern, sizes=cast(dict, pre_reshape_lengths))
self.post_rearrange = None
if post_reshape_pattern is not None:
self.post_rearrange = Rearrange(post_reshape_pattern, sizes=cast(dict, post_reshape_lengths))
def __call__(self, input):
if self.pre_rearrange is not None:
input = self.pre_rearrange(input)
result = jnp.einsum(self.einsum_pattern, input, self.weight)
if self.bias is not None:
result += self.bias
if self.post_rearrange is not None:
result = self.post_rearrange(result)
return result