68 lines
2.3 KiB
Python
68 lines
2.3 KiB
Python
|
from typing import Optional, Dict, cast
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from . import RearrangeMixin, ReduceMixin
|
||
|
from ._einmix import _EinmixMixin
|
||
|
from .._torch_specific import apply_for_scriptable_torch
|
||
|
|
||
|
__author__ = "Alex Rogozhnikov"
|
||
|
|
||
|
|
||
|
class Rearrange(RearrangeMixin, torch.nn.Module):
|
||
|
def forward(self, input):
|
||
|
recipe = self._multirecipe[input.ndim]
|
||
|
return apply_for_scriptable_torch(recipe, input, reduction_type="rearrange", axes_dims=self._axes_lengths)
|
||
|
|
||
|
def _apply_recipe(self, x):
|
||
|
# overriding parent method to prevent it's scripting
|
||
|
pass
|
||
|
|
||
|
|
||
|
class Reduce(ReduceMixin, torch.nn.Module):
|
||
|
def forward(self, input):
|
||
|
recipe = self._multirecipe[input.ndim]
|
||
|
return apply_for_scriptable_torch(recipe, input, reduction_type=self.reduction, axes_dims=self._axes_lengths)
|
||
|
|
||
|
def _apply_recipe(self, x):
|
||
|
# overriding parent method to prevent it's scripting
|
||
|
pass
|
||
|
|
||
|
|
||
|
class EinMix(_EinmixMixin, torch.nn.Module):
|
||
|
def _create_parameters(self, weight_shape, weight_bound, bias_shape, bias_bound):
|
||
|
self.weight = torch.nn.Parameter(
|
||
|
torch.zeros(weight_shape).uniform_(-weight_bound, weight_bound), requires_grad=True
|
||
|
)
|
||
|
if bias_shape is not None:
|
||
|
self.bias = torch.nn.Parameter(
|
||
|
torch.zeros(bias_shape).uniform_(-bias_bound, bias_bound), requires_grad=True
|
||
|
)
|
||
|
else:
|
||
|
self.bias = None
|
||
|
|
||
|
def _create_rearrange_layers(
|
||
|
self,
|
||
|
pre_reshape_pattern: Optional[str],
|
||
|
pre_reshape_lengths: Optional[Dict],
|
||
|
post_reshape_pattern: Optional[str],
|
||
|
post_reshape_lengths: Optional[Dict],
|
||
|
):
|
||
|
self.pre_rearrange = None
|
||
|
if pre_reshape_pattern is not None:
|
||
|
self.pre_rearrange = Rearrange(pre_reshape_pattern, **cast(dict, pre_reshape_lengths))
|
||
|
|
||
|
self.post_rearrange = None
|
||
|
if post_reshape_pattern is not None:
|
||
|
self.post_rearrange = Rearrange(post_reshape_pattern, **cast(dict, post_reshape_lengths))
|
||
|
|
||
|
def forward(self, input):
|
||
|
if self.pre_rearrange is not None:
|
||
|
input = self.pre_rearrange(input)
|
||
|
result = torch.einsum(self.einsum_pattern, input, self.weight)
|
||
|
if self.bias is not None:
|
||
|
result += self.bias
|
||
|
if self.post_rearrange is not None:
|
||
|
result = self.post_rearrange(result)
|
||
|
return result
|