329 lines
10 KiB
Python
329 lines
10 KiB
Python
|
""" This module contains everything that can help automatize
|
||
|
the cuts in MoviePy """
|
||
|
|
||
|
from collections import defaultdict
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from moviepy.decorators import use_clip_fps_by_default
|
||
|
|
||
|
|
||
|
@use_clip_fps_by_default
|
||
|
def find_video_period(clip,fps=None,tmin=.3):
|
||
|
""" Finds the period of a video based on frames correlation """
|
||
|
|
||
|
frame = lambda t: clip.get_frame(t).flatten()
|
||
|
tt = np.arange(tmin, clip.duration, 1.0/ fps)[1:]
|
||
|
ref = frame(0)
|
||
|
corrs = [ np.corrcoef(ref, frame(t))[0,1] for t in tt]
|
||
|
return tt[np.argmax(corrs)]
|
||
|
|
||
|
|
||
|
class FramesMatch:
|
||
|
"""
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
|
||
|
t1
|
||
|
Starting time
|
||
|
|
||
|
t2
|
||
|
End time
|
||
|
|
||
|
d_min
|
||
|
Lower bound on the distance between the first and last frames
|
||
|
|
||
|
d_max
|
||
|
Upper bound on the distance between the first and last frames
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, t1, t2, d_min, d_max):
|
||
|
self.t1 = t1
|
||
|
self.t2 = t2
|
||
|
self.d_min = d_min
|
||
|
self.d_max = d_max
|
||
|
self.time_span = t2-t1
|
||
|
|
||
|
def __str__(self):
|
||
|
|
||
|
return '(%.04f, %.04f, %.04f, %.04f)'%(
|
||
|
self.t1, self.t2, self.d_min, self.d_max)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return '(%.04f, %.04f, %.04f, %.04f)'%(
|
||
|
self.t1, self.t2, self.d_min, self.d_max)
|
||
|
|
||
|
def __iter__(self):
|
||
|
return iter((self.t1, self.t2, self.d_min, self.d_max))
|
||
|
|
||
|
|
||
|
class FramesMatches(list):
|
||
|
|
||
|
def __init__(self, lst):
|
||
|
|
||
|
list.__init__(self, sorted(lst, key=lambda e: e.d_max))
|
||
|
|
||
|
def best(self, n=1, percent=None):
|
||
|
if percent is not None:
|
||
|
n = len(self)*percent/100
|
||
|
return self[0] if n==1 else FramesMatches(self[:n])
|
||
|
|
||
|
def filter(self, cond):
|
||
|
"""
|
||
|
Returns a FramesMatches object obtained by filtering out the FramesMatch
|
||
|
which do not satistify the condition ``cond``. ``cond`` is a function
|
||
|
(FrameMatch -> bool).
|
||
|
|
||
|
Examples
|
||
|
---------
|
||
|
>>> # Only keep the matches corresponding to (> 1 second) sequences.
|
||
|
>>> new_matches = matches.filter( lambda match: match.time_span > 1)
|
||
|
"""
|
||
|
return FramesMatches(filter(cond, self))
|
||
|
|
||
|
def save(self, filename):
|
||
|
np.savetxt(filename, np.array([np.array(list(e)) for e in self]),
|
||
|
fmt='%.03f', delimiter='\t')
|
||
|
|
||
|
@staticmethod
|
||
|
def load(filename):
|
||
|
""" Loads a FramesMatches object from a file.
|
||
|
>>> matching_frames = FramesMatches.load("somefile")
|
||
|
"""
|
||
|
arr = np.loadtxt(filename)
|
||
|
mfs = [FramesMatch(*e) for e in arr]
|
||
|
return FramesMatches(mfs)
|
||
|
|
||
|
|
||
|
|
||
|
@staticmethod
|
||
|
def from_clip(clip, dist_thr, max_d, fps=None):
|
||
|
""" Finds all the frames tht look alike in a clip, for instance to make a
|
||
|
looping gif.
|
||
|
|
||
|
This teturns a FramesMatches object of the all pairs of frames with
|
||
|
(t2-t1 < max_d) and whose distance is under dist_thr.
|
||
|
|
||
|
This is well optimized routine and quite fast.
|
||
|
|
||
|
Examples
|
||
|
---------
|
||
|
|
||
|
We find all matching frames in a given video and turn the best match with
|
||
|
a duration of 1.5s or more into a GIF:
|
||
|
|
||
|
>>> from moviepy.editor import VideoFileClip
|
||
|
>>> from moviepy.video.tools.cuts import find_matching_frames
|
||
|
>>> clip = VideoFileClip("foo.mp4").resize(width=200)
|
||
|
>>> matches = find_matching_frames(clip, 10, 3) # will take time
|
||
|
>>> best = matches.filter(lambda m: m.time_span > 1.5).best()
|
||
|
>>> clip.subclip(best.t1, best.t2).write_gif("foo.gif")
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
|
||
|
clip
|
||
|
A MoviePy video clip, possibly transformed/resized
|
||
|
|
||
|
dist_thr
|
||
|
Distance above which a match is rejected
|
||
|
|
||
|
max_d
|
||
|
Maximal duration (in seconds) between two matching frames
|
||
|
|
||
|
fps
|
||
|
Frames per second (default will be clip.fps)
|
||
|
|
||
|
"""
|
||
|
|
||
|
N_pixels = clip.w * clip.h * 3
|
||
|
dot_product = lambda F1, F2: (F1*F2).sum()/N_pixels
|
||
|
F = {} # will store the frames and their mutual distances
|
||
|
|
||
|
def distance(t1, t2):
|
||
|
uv = dot_product(F[t1]['frame'], F[t2]['frame'])
|
||
|
u, v = F[t1]['|F|sq'], F[t2]['|F|sq']
|
||
|
return np.sqrt(u+v - 2*uv)
|
||
|
|
||
|
matching_frames = [] # the final result.
|
||
|
|
||
|
for (t,frame) in clip.iter_frames(with_times=True, logger='bar'):
|
||
|
|
||
|
flat_frame = 1.0*frame.flatten()
|
||
|
F_norm_sq = dot_product(flat_frame, flat_frame)
|
||
|
F_norm = np.sqrt(F_norm_sq)
|
||
|
|
||
|
for t2 in list(F.keys()):
|
||
|
# forget old frames, add 't' to the others frames
|
||
|
# check for early rejections based on differing norms
|
||
|
if (t-t2) > max_d:
|
||
|
F.pop(t2)
|
||
|
else:
|
||
|
F[t2][t] = {'min':abs(F[t2]['|F|'] - F_norm),
|
||
|
'max':F[t2]['|F|'] + F_norm}
|
||
|
F[t2][t]['rejected']= (F[t2][t]['min'] > dist_thr)
|
||
|
|
||
|
t_F = sorted(F.keys())
|
||
|
|
||
|
F[t] = {'frame': flat_frame, '|F|sq': F_norm_sq, '|F|': F_norm}
|
||
|
|
||
|
for i,t2 in enumerate(t_F):
|
||
|
# Compare F(t) to all the previous frames
|
||
|
|
||
|
if F[t2][t]['rejected']:
|
||
|
continue
|
||
|
|
||
|
dist = distance(t, t2)
|
||
|
F[t2][t]['min'] = F[t2][t]['max'] = dist
|
||
|
F[t2][t]['rejected'] = (dist >= dist_thr)
|
||
|
|
||
|
for t3 in t_F[i+1:]:
|
||
|
# For all the next times t3, use d(F(t), F(t2)) to
|
||
|
# update the bounds on d(F(t), F(t3)). See if you can
|
||
|
# conclude on wether F(t) and F(t3) match.
|
||
|
t3t, t2t3 = F[t3][t], F[t2][t3]
|
||
|
t3t['max'] = min(t3t['max'], dist+ t2t3['max'])
|
||
|
t3t['min'] = max(t3t['min'], dist - t2t3['max'],
|
||
|
t2t3['min'] - dist)
|
||
|
|
||
|
if t3t['min'] > dist_thr:
|
||
|
t3t['rejected'] = True
|
||
|
|
||
|
# Store all the good matches (t2,t)
|
||
|
matching_frames += [(t1, t, F[t1][t]['min'], F[t1][t]['max']) for t1 in F
|
||
|
if (t1!=t) and not F[t1][t]['rejected']]
|
||
|
|
||
|
return FramesMatches([FramesMatch(*e) for e in matching_frames])
|
||
|
|
||
|
|
||
|
|
||
|
def select_scenes(self, match_thr, min_time_span, nomatch_thr=None,
|
||
|
time_distance=0):
|
||
|
"""
|
||
|
|
||
|
match_thr
|
||
|
The smaller, the better-looping the gifs are.
|
||
|
|
||
|
min_time_span
|
||
|
Only GIFs with a duration longer than min_time_span (in seconds)
|
||
|
will be extracted.
|
||
|
|
||
|
nomatch_thr
|
||
|
If None, then it is chosen equal to match_thr
|
||
|
|
||
|
"""
|
||
|
|
||
|
if nomatch_thr is None:
|
||
|
nomatch_thr = match_thr
|
||
|
|
||
|
dict_starts = defaultdict(lambda : [])
|
||
|
for (start, end, d_min, d_max) in self:
|
||
|
dict_starts[start].append([end, d_min, d_max])
|
||
|
|
||
|
starts_ends = sorted(dict_starts.items(), key = lambda k: k[0])
|
||
|
|
||
|
result = []
|
||
|
min_start= 0
|
||
|
for start, ends_distances in starts_ends:
|
||
|
|
||
|
if start < min_start:
|
||
|
continue
|
||
|
|
||
|
ends = [end for (end, d_min, d_max) in ends_distances]
|
||
|
great_matches = [(end,d_min, d_max)
|
||
|
for (end,d_min, d_max) in ends_distances
|
||
|
if d_max<match_thr]
|
||
|
|
||
|
great_long_matches = [(end,d_min, d_max)
|
||
|
for (end,d_min, d_max) in great_matches
|
||
|
if (end-start)>min_time_span]
|
||
|
|
||
|
|
||
|
if not great_long_matches:
|
||
|
continue # No GIF can be made starting at this time
|
||
|
|
||
|
poor_matches = {end for (end,d_min, d_max) in ends_distances if d_min > nomatch_thr}
|
||
|
short_matches = {end for end in ends if (end-start) <= 0.6}
|
||
|
|
||
|
if not poor_matches.intersection(short_matches):
|
||
|
continue
|
||
|
|
||
|
end = max(end for (end, d_min, d_max) in great_long_matches)
|
||
|
end, d_min, d_max = next(e for e in great_long_matches if e[0]==end)
|
||
|
|
||
|
result.append(FramesMatch(start, end, d_min, d_max))
|
||
|
min_start = start + time_distance
|
||
|
|
||
|
return FramesMatches(result)
|
||
|
|
||
|
|
||
|
def write_gifs(self, clip, gif_dir):
|
||
|
for (start, end, _, _) in self:
|
||
|
name = "%s/%08d_%08d.gif" % (gif_dir, 100*start, 100*end)
|
||
|
clip.subclip(start, end).write_gif(name, verbose=False)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
@use_clip_fps_by_default
|
||
|
def detect_scenes(clip=None, luminosities=None, thr=10,
|
||
|
logger='bar', fps=None):
|
||
|
""" Detects scenes of a clip based on luminosity changes.
|
||
|
|
||
|
Note that for large clip this may take some time
|
||
|
|
||
|
Returns
|
||
|
--------
|
||
|
cuts, luminosities
|
||
|
cuts is a series of cuts [(0,t1), (t1,t2),...(...,tf)]
|
||
|
luminosities are the luminosities computed for each
|
||
|
frame of the clip.
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
|
||
|
clip
|
||
|
A video clip. Can be None if a list of luminosities is
|
||
|
provided instead. If provided, the luminosity of each
|
||
|
frame of the clip will be computed. If the clip has no
|
||
|
'fps' attribute, you must provide it.
|
||
|
|
||
|
luminosities
|
||
|
A list of luminosities, e.g. returned by detect_scenes
|
||
|
in a previous run.
|
||
|
|
||
|
thr
|
||
|
Determines a threshold above which the 'luminosity jumps'
|
||
|
will be considered as scene changes. A scene change is defined
|
||
|
as a change between 2 consecutive frames that is larger than
|
||
|
(avg * thr) where avg is the average of the absolute changes
|
||
|
between consecutive frames.
|
||
|
|
||
|
progress_bar
|
||
|
We all love progress bars ! Here is one for you, in option.
|
||
|
|
||
|
fps
|
||
|
Must be provided if you provide no clip or a clip without
|
||
|
fps attribute.
|
||
|
|
||
|
|
||
|
"""
|
||
|
if luminosities is None:
|
||
|
luminosities = [f.sum() for f in clip.iter_frames(
|
||
|
fps=fps, dtype='uint32', logger=logger)]
|
||
|
|
||
|
luminosities = np.array(luminosities, dtype=float)
|
||
|
if clip is not None:
|
||
|
end = clip.duration
|
||
|
else:
|
||
|
end = len(luminosities)*(1.0/fps)
|
||
|
lum_diffs = abs(np.diff(luminosities))
|
||
|
avg = lum_diffs.mean()
|
||
|
luminosity_jumps = 1+np.array(np.nonzero(lum_diffs> thr*avg))[0]
|
||
|
tt = [0]+list((1.0/fps) *luminosity_jumps) + [end]
|
||
|
#print tt
|
||
|
cuts = [(t1,t2) for t1,t2 in zip(tt,tt[1:])]
|
||
|
return cuts, luminosities
|