ai-content-maker/.venv/Lib/site-packages/mpl_toolkits/axisartist/floating_axes.py

299 lines
11 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""
An experimental support for curvilinear grid.
"""
# TODO :
# see if tick_iterator method can be simplified by reusing the parent method.
import functools
import numpy as np
import matplotlib as mpl
from matplotlib import _api, cbook
import matplotlib.patches as mpatches
from matplotlib.path import Path
from mpl_toolkits.axes_grid1.parasite_axes import host_axes_class_factory
from . import axislines, grid_helper_curvelinear
from .axis_artist import AxisArtist
from .grid_finder import ExtremeFinderSimple
class FloatingAxisArtistHelper(
grid_helper_curvelinear.FloatingAxisArtistHelper):
pass
class FixedAxisArtistHelper(grid_helper_curvelinear.FloatingAxisArtistHelper):
def __init__(self, grid_helper, side, nth_coord_ticks=None):
"""
nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis
"""
lon1, lon2, lat1, lat2 = grid_helper.grid_finder.extreme_finder(*[None] * 5)
value, nth_coord = _api.check_getitem(
dict(left=(lon1, 0), right=(lon2, 0), bottom=(lat1, 1), top=(lat2, 1)),
side=side)
super().__init__(grid_helper, nth_coord, value, axis_direction=side)
if nth_coord_ticks is None:
nth_coord_ticks = nth_coord
self.nth_coord_ticks = nth_coord_ticks
self.value = value
self.grid_helper = grid_helper
self._side = side
def update_lim(self, axes):
self.grid_helper.update_lim(axes)
self._grid_info = self.grid_helper._grid_info
def get_tick_iterators(self, axes):
"""tick_loc, tick_angle, tick_label, (optionally) tick_label"""
grid_finder = self.grid_helper.grid_finder
lat_levs, lat_n, lat_factor = self._grid_info["lat_info"]
yy0 = lat_levs / lat_factor
lon_levs, lon_n, lon_factor = self._grid_info["lon_info"]
xx0 = lon_levs / lon_factor
extremes = self.grid_helper.grid_finder.extreme_finder(*[None] * 5)
xmin, xmax = sorted(extremes[:2])
ymin, ymax = sorted(extremes[2:])
def trf_xy(x, y):
trf = grid_finder.get_transform() + axes.transData
return trf.transform(np.column_stack(np.broadcast_arrays(x, y))).T
if self.nth_coord == 0:
mask = (ymin <= yy0) & (yy0 <= ymax)
(xx1, yy1), (dxx1, dyy1), (dxx2, dyy2) = \
grid_helper_curvelinear._value_and_jacobian(
trf_xy, self.value, yy0[mask], (xmin, xmax), (ymin, ymax))
labels = self._grid_info["lat_labels"]
elif self.nth_coord == 1:
mask = (xmin <= xx0) & (xx0 <= xmax)
(xx1, yy1), (dxx2, dyy2), (dxx1, dyy1) = \
grid_helper_curvelinear._value_and_jacobian(
trf_xy, xx0[mask], self.value, (xmin, xmax), (ymin, ymax))
labels = self._grid_info["lon_labels"]
labels = [l for l, m in zip(labels, mask) if m]
angle_normal = np.arctan2(dyy1, dxx1)
angle_tangent = np.arctan2(dyy2, dxx2)
mm = (dyy1 == 0) & (dxx1 == 0) # points with degenerate normal
angle_normal[mm] = angle_tangent[mm] + np.pi / 2
tick_to_axes = self.get_tick_transform(axes) - axes.transAxes
in_01 = functools.partial(
mpl.transforms._interval_contains_close, (0, 1))
def f1():
for x, y, normal, tangent, lab \
in zip(xx1, yy1, angle_normal, angle_tangent, labels):
c2 = tick_to_axes.transform((x, y))
if in_01(c2[0]) and in_01(c2[1]):
yield [x, y], *np.rad2deg([normal, tangent]), lab
return f1(), iter([])
def get_line(self, axes):
self.update_lim(axes)
k, v = dict(left=("lon_lines0", 0),
right=("lon_lines0", 1),
bottom=("lat_lines0", 0),
top=("lat_lines0", 1))[self._side]
xx, yy = self._grid_info[k][v]
return Path(np.column_stack([xx, yy]))
class ExtremeFinderFixed(ExtremeFinderSimple):
# docstring inherited
def __init__(self, extremes):
"""
This subclass always returns the same bounding box.
Parameters
----------
extremes : (float, float, float, float)
The bounding box that this helper always returns.
"""
self._extremes = extremes
def __call__(self, transform_xy, x1, y1, x2, y2):
# docstring inherited
return self._extremes
class GridHelperCurveLinear(grid_helper_curvelinear.GridHelperCurveLinear):
def __init__(self, aux_trans, extremes,
grid_locator1=None,
grid_locator2=None,
tick_formatter1=None,
tick_formatter2=None):
# docstring inherited
super().__init__(aux_trans,
extreme_finder=ExtremeFinderFixed(extremes),
grid_locator1=grid_locator1,
grid_locator2=grid_locator2,
tick_formatter1=tick_formatter1,
tick_formatter2=tick_formatter2)
@_api.deprecated("3.8")
def get_data_boundary(self, side):
"""
Return v=0, nth=1.
"""
lon1, lon2, lat1, lat2 = self.grid_finder.extreme_finder(*[None] * 5)
return dict(left=(lon1, 0),
right=(lon2, 0),
bottom=(lat1, 1),
top=(lat2, 1))[side]
def new_fixed_axis(self, loc,
nth_coord=None,
axis_direction=None,
offset=None,
axes=None):
if axes is None:
axes = self.axes
if axis_direction is None:
axis_direction = loc
# This is not the same as the FixedAxisArtistHelper class used by
# grid_helper_curvelinear.GridHelperCurveLinear.new_fixed_axis!
helper = FixedAxisArtistHelper(
self, loc, nth_coord_ticks=nth_coord)
axisline = AxisArtist(axes, helper, axis_direction=axis_direction)
# Perhaps should be moved to the base class?
axisline.line.set_clip_on(True)
axisline.line.set_clip_box(axisline.axes.bbox)
return axisline
# new_floating_axis will inherit the grid_helper's extremes.
# def new_floating_axis(self, nth_coord,
# value,
# axes=None,
# axis_direction="bottom"
# ):
# axis = super(GridHelperCurveLinear,
# self).new_floating_axis(nth_coord,
# value, axes=axes,
# axis_direction=axis_direction)
# # set extreme values of the axis helper
# if nth_coord == 1:
# axis.get_helper().set_extremes(*self._extremes[:2])
# elif nth_coord == 0:
# axis.get_helper().set_extremes(*self._extremes[2:])
# return axis
def _update_grid(self, x1, y1, x2, y2):
if self._grid_info is None:
self._grid_info = dict()
grid_info = self._grid_info
grid_finder = self.grid_finder
extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy,
x1, y1, x2, y2)
lon_min, lon_max = sorted(extremes[:2])
lat_min, lat_max = sorted(extremes[2:])
grid_info["extremes"] = lon_min, lon_max, lat_min, lat_max # extremes
lon_levs, lon_n, lon_factor = \
grid_finder.grid_locator1(lon_min, lon_max)
lon_levs = np.asarray(lon_levs)
lat_levs, lat_n, lat_factor = \
grid_finder.grid_locator2(lat_min, lat_max)
lat_levs = np.asarray(lat_levs)
grid_info["lon_info"] = lon_levs, lon_n, lon_factor
grid_info["lat_info"] = lat_levs, lat_n, lat_factor
grid_info["lon_labels"] = grid_finder.tick_formatter1(
"bottom", lon_factor, lon_levs)
grid_info["lat_labels"] = grid_finder.tick_formatter2(
"bottom", lat_factor, lat_levs)
lon_values = lon_levs[:lon_n] / lon_factor
lat_values = lat_levs[:lat_n] / lat_factor
lon_lines, lat_lines = grid_finder._get_raw_grid_lines(
lon_values[(lon_min < lon_values) & (lon_values < lon_max)],
lat_values[(lat_min < lat_values) & (lat_values < lat_max)],
lon_min, lon_max, lat_min, lat_max)
grid_info["lon_lines"] = lon_lines
grid_info["lat_lines"] = lat_lines
lon_lines, lat_lines = grid_finder._get_raw_grid_lines(
# lon_min, lon_max, lat_min, lat_max)
extremes[:2], extremes[2:], *extremes)
grid_info["lon_lines0"] = lon_lines
grid_info["lat_lines0"] = lat_lines
def get_gridlines(self, which="major", axis="both"):
grid_lines = []
if axis in ["both", "x"]:
grid_lines.extend(self._grid_info["lon_lines"])
if axis in ["both", "y"]:
grid_lines.extend(self._grid_info["lat_lines"])
return grid_lines
class FloatingAxesBase:
def __init__(self, *args, grid_helper, **kwargs):
_api.check_isinstance(GridHelperCurveLinear, grid_helper=grid_helper)
super().__init__(*args, grid_helper=grid_helper, **kwargs)
self.set_aspect(1.)
def _gen_axes_patch(self):
# docstring inherited
x0, x1, y0, y1 = self.get_grid_helper().grid_finder.extreme_finder(*[None] * 5)
patch = mpatches.Polygon([(x0, y0), (x1, y0), (x1, y1), (x0, y1)])
patch.get_path()._interpolation_steps = 100
return patch
def clear(self):
super().clear()
self.patch.set_transform(
self.get_grid_helper().grid_finder.get_transform()
+ self.transData)
# The original patch is not in the draw tree; it is only used for
# clipping purposes.
orig_patch = super()._gen_axes_patch()
orig_patch.set_figure(self.figure)
orig_patch.set_transform(self.transAxes)
self.patch.set_clip_path(orig_patch)
self.gridlines.set_clip_path(orig_patch)
self.adjust_axes_lim()
def adjust_axes_lim(self):
bbox = self.patch.get_path().get_extents(
# First transform to pixel coords, then to parent data coords.
self.patch.get_transform() - self.transData)
bbox = bbox.expanded(1.02, 1.02)
self.set_xlim(bbox.xmin, bbox.xmax)
self.set_ylim(bbox.ymin, bbox.ymax)
floatingaxes_class_factory = cbook._make_class_factory(
FloatingAxesBase, "Floating{}")
FloatingAxes = floatingaxes_class_factory(
host_axes_class_factory(axislines.Axes))
FloatingSubplot = FloatingAxes