ai-content-maker/.venv/Lib/site-packages/mpl_toolkits/mplot3d/tests/test_axes3d.py

2297 lines
75 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import functools
import itertools
import platform
import pytest
from mpl_toolkits.mplot3d import Axes3D, axes3d, proj3d, art3d
import matplotlib as mpl
from matplotlib.backend_bases import (MouseButton, MouseEvent,
NavigationToolbar2)
from matplotlib import cm
from matplotlib import colors as mcolors, patches as mpatch
from matplotlib.testing.decorators import image_comparison, check_figures_equal
from matplotlib.testing.widgets import mock_event
from matplotlib.collections import LineCollection, PolyCollection
from matplotlib.patches import Circle, PathPatch
from matplotlib.path import Path
from matplotlib.text import Text
import matplotlib.pyplot as plt
import numpy as np
mpl3d_image_comparison = functools.partial(
image_comparison, remove_text=True, style='default')
def plot_cuboid(ax, scale):
# plot a rectangular cuboid with side lengths given by scale (x, y, z)
r = [0, 1]
pts = itertools.combinations(np.array(list(itertools.product(r, r, r))), 2)
for start, end in pts:
if np.sum(np.abs(start - end)) == r[1] - r[0]:
ax.plot3D(*zip(start*np.array(scale), end*np.array(scale)))
@check_figures_equal(extensions=["png"])
def test_invisible_axes(fig_test, fig_ref):
ax = fig_test.subplots(subplot_kw=dict(projection='3d'))
ax.set_visible(False)
@mpl3d_image_comparison(['grid_off.png'], style='mpl20')
def test_grid_off():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.grid(False)
@mpl3d_image_comparison(['invisible_ticks_axis.png'], style='mpl20')
def test_invisible_ticks_axis():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
for axis in [ax.xaxis, ax.yaxis, ax.zaxis]:
axis.line.set_visible(False)
@mpl3d_image_comparison(['axis_positions.png'], remove_text=False, style='mpl20')
def test_axis_positions():
positions = ['upper', 'lower', 'both', 'none']
fig, axs = plt.subplots(2, 2, subplot_kw={'projection': '3d'})
for ax, pos in zip(axs.flatten(), positions):
for axis in ax.xaxis, ax.yaxis, ax.zaxis:
axis.set_label_position(pos)
axis.set_ticks_position(pos)
title = f'{pos}'
ax.set(xlabel='x', ylabel='y', zlabel='z', title=title)
@mpl3d_image_comparison(['aspects.png'], remove_text=False, style='mpl20')
def test_aspects():
aspects = ('auto', 'equal', 'equalxy', 'equalyz', 'equalxz', 'equal')
_, axs = plt.subplots(2, 3, subplot_kw={'projection': '3d'})
for ax in axs.flatten()[0:-1]:
plot_cuboid(ax, scale=[1, 1, 5])
# plot a cube as well to cover github #25443
plot_cuboid(axs[1][2], scale=[1, 1, 1])
for i, ax in enumerate(axs.flatten()):
ax.set_title(aspects[i])
ax.set_box_aspect((3, 4, 5))
ax.set_aspect(aspects[i], adjustable='datalim')
axs[1][2].set_title('equal (cube)')
@mpl3d_image_comparison(['aspects_adjust_box.png'],
remove_text=False, style='mpl20')
def test_aspects_adjust_box():
aspects = ('auto', 'equal', 'equalxy', 'equalyz', 'equalxz')
fig, axs = plt.subplots(1, len(aspects), subplot_kw={'projection': '3d'},
figsize=(11, 3))
for i, ax in enumerate(axs):
plot_cuboid(ax, scale=[4, 3, 5])
ax.set_title(aspects[i])
ax.set_aspect(aspects[i], adjustable='box')
def test_axes3d_repr():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.set_label('label')
ax.set_title('title')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
assert repr(ax) == (
"<Axes3D: label='label', "
"title={'center': 'title'}, xlabel='x', ylabel='y', zlabel='z'>")
@mpl3d_image_comparison(['axes3d_primary_views.png'], style='mpl20')
def test_axes3d_primary_views():
# (elev, azim, roll)
views = [(90, -90, 0), # XY
(0, -90, 0), # XZ
(0, 0, 0), # YZ
(-90, 90, 0), # -XY
(0, 90, 0), # -XZ
(0, 180, 0)] # -YZ
# When viewing primary planes, draw the two visible axes so they intersect
# at their low values
fig, axs = plt.subplots(2, 3, subplot_kw={'projection': '3d'})
for i, ax in enumerate(axs.flat):
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_proj_type('ortho')
ax.view_init(elev=views[i][0], azim=views[i][1], roll=views[i][2])
plt.tight_layout()
@mpl3d_image_comparison(['bar3d.png'], style='mpl20')
def test_bar3d():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]):
xs = np.arange(20)
ys = np.arange(20)
cs = [c] * len(xs)
cs[0] = 'c'
ax.bar(xs, ys, zs=z, zdir='y', align='edge', color=cs, alpha=0.8)
def test_bar3d_colors():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
for c in ['red', 'green', 'blue', 'yellow']:
xs = np.arange(len(c))
ys = np.zeros_like(xs)
zs = np.zeros_like(ys)
# Color names with same length as xs/ys/zs should not be split into
# individual letters.
ax.bar3d(xs, ys, zs, 1, 1, 1, color=c)
@mpl3d_image_comparison(['bar3d_shaded.png'], style='mpl20')
def test_bar3d_shaded():
x = np.arange(4)
y = np.arange(5)
x2d, y2d = np.meshgrid(x, y)
x2d, y2d = x2d.ravel(), y2d.ravel()
z = x2d + y2d + 1 # Avoid triggering bug with zero-depth boxes.
views = [(30, -60, 0), (30, 30, 30), (-30, 30, -90), (300, -30, 0)]
fig = plt.figure(figsize=plt.figaspect(1 / len(views)))
axs = fig.subplots(
1, len(views),
subplot_kw=dict(projection='3d')
)
for ax, (elev, azim, roll) in zip(axs, views):
ax.bar3d(x2d, y2d, x2d * 0, 1, 1, z, shade=True)
ax.view_init(elev=elev, azim=azim, roll=roll)
fig.canvas.draw()
@mpl3d_image_comparison(['bar3d_notshaded.png'], style='mpl20')
def test_bar3d_notshaded():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
x = np.arange(4)
y = np.arange(5)
x2d, y2d = np.meshgrid(x, y)
x2d, y2d = x2d.ravel(), y2d.ravel()
z = x2d + y2d
ax.bar3d(x2d, y2d, x2d * 0, 1, 1, z, shade=False)
fig.canvas.draw()
def test_bar3d_lightsource():
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection="3d")
ls = mcolors.LightSource(azdeg=0, altdeg=90)
length, width = 3, 4
area = length * width
x, y = np.meshgrid(np.arange(length), np.arange(width))
x = x.ravel()
y = y.ravel()
dz = x + y
color = [cm.coolwarm(i/area) for i in range(area)]
collection = ax.bar3d(x=x, y=y, z=0,
dx=1, dy=1, dz=dz,
color=color, shade=True, lightsource=ls)
# Testing that the custom 90° lightsource produces different shading on
# the top facecolors compared to the default, and that those colors are
# precisely (within floating point rounding errors of 4 ULP) the colors
# from the colormap, due to the illumination parallel to the z-axis.
np.testing.assert_array_max_ulp(color, collection._facecolor3d[1::6], 4)
@mpl3d_image_comparison(
['contour3d.png'], style='mpl20',
tol=0.002 if platform.machine() in ('aarch64', 'ppc64le', 's390x') else 0)
def test_contour3d():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
ax.axis(xmin=-40, xmax=40, ymin=-40, ymax=40, zmin=-100, zmax=100)
@mpl3d_image_comparison(['contour3d_extend3d.png'], style='mpl20')
def test_contour3d_extend3d():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm, extend3d=True)
ax.set_xlim(-30, 30)
ax.set_ylim(-20, 40)
ax.set_zlim(-80, 80)
@mpl3d_image_comparison(['contourf3d.png'], style='mpl20')
def test_contourf3d():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.contourf(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
ax.contourf(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
ax.contourf(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
ax.set_xlim(-40, 40)
ax.set_ylim(-40, 40)
ax.set_zlim(-100, 100)
@mpl3d_image_comparison(['contourf3d_fill.png'], style='mpl20')
def test_contourf3d_fill():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
X, Y = np.meshgrid(np.arange(-2, 2, 0.25), np.arange(-2, 2, 0.25))
Z = X.clip(0, 0)
# This produces holes in the z=0 surface that causes rendering errors if
# the Poly3DCollection is not aware of path code information (issue #4784)
Z[::5, ::5] = 0.1
ax.contourf(X, Y, Z, offset=0, levels=[-0.1, 0], cmap=cm.coolwarm)
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
ax.set_zlim(-1, 1)
@pytest.mark.parametrize('extend, levels', [['both', [2, 4, 6]],
['min', [2, 4, 6, 8]],
['max', [0, 2, 4, 6]]])
@check_figures_equal(extensions=["png"])
def test_contourf3d_extend(fig_test, fig_ref, extend, levels):
X, Y = np.meshgrid(np.arange(-2, 2, 0.25), np.arange(-2, 2, 0.25))
# Z is in the range [0, 8]
Z = X**2 + Y**2
# Manually set the over/under colors to be the end of the colormap
cmap = mpl.colormaps['viridis'].copy()
cmap.set_under(cmap(0))
cmap.set_over(cmap(255))
# Set vmin/max to be the min/max values plotted on the reference image
kwargs = {'vmin': 1, 'vmax': 7, 'cmap': cmap}
ax_ref = fig_ref.add_subplot(projection='3d')
ax_ref.contourf(X, Y, Z, levels=[0, 2, 4, 6, 8], **kwargs)
ax_test = fig_test.add_subplot(projection='3d')
ax_test.contourf(X, Y, Z, levels, extend=extend, **kwargs)
for ax in [ax_ref, ax_test]:
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
ax.set_zlim(-10, 10)
@mpl3d_image_comparison(['tricontour.png'], tol=0.02, style='mpl20')
def test_tricontour():
fig = plt.figure()
np.random.seed(19680801)
x = np.random.rand(1000) - 0.5
y = np.random.rand(1000) - 0.5
z = -(x**2 + y**2)
ax = fig.add_subplot(1, 2, 1, projection='3d')
ax.tricontour(x, y, z)
ax = fig.add_subplot(1, 2, 2, projection='3d')
ax.tricontourf(x, y, z)
def test_contour3d_1d_input():
# Check that 1D sequences of different length for {x, y} doesn't error
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
nx, ny = 30, 20
x = np.linspace(-10, 10, nx)
y = np.linspace(-10, 10, ny)
z = np.random.randint(0, 2, [ny, nx])
ax.contour(x, y, z, [0.5])
@mpl3d_image_comparison(['lines3d.png'], style='mpl20')
def test_lines3d():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z ** 2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z)
@check_figures_equal(extensions=["png"])
def test_plot_scalar(fig_test, fig_ref):
ax1 = fig_test.add_subplot(projection='3d')
ax1.plot([1], [1], "o")
ax2 = fig_ref.add_subplot(projection='3d')
ax2.plot(1, 1, "o")
def test_invalid_line_data():
with pytest.raises(RuntimeError, match='x must be'):
art3d.Line3D(0, [], [])
with pytest.raises(RuntimeError, match='y must be'):
art3d.Line3D([], 0, [])
with pytest.raises(RuntimeError, match='z must be'):
art3d.Line3D([], [], 0)
line = art3d.Line3D([], [], [])
with pytest.raises(RuntimeError, match='x must be'):
line.set_data_3d(0, [], [])
with pytest.raises(RuntimeError, match='y must be'):
line.set_data_3d([], 0, [])
with pytest.raises(RuntimeError, match='z must be'):
line.set_data_3d([], [], 0)
@mpl3d_image_comparison(['mixedsubplot.png'], style='mpl20')
def test_mixedsubplots():
def f(t):
return np.cos(2*np.pi*t) * np.exp(-t)
t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)
fig = plt.figure(figsize=plt.figaspect(2.))
ax = fig.add_subplot(2, 1, 1)
ax.plot(t1, f(t1), 'bo', t2, f(t2), 'k--', markerfacecolor='green')
ax.grid(True)
ax = fig.add_subplot(2, 1, 2, projection='3d')
X, Y = np.meshgrid(np.arange(-5, 5, 0.25), np.arange(-5, 5, 0.25))
R = np.hypot(X, Y)
Z = np.sin(R)
ax.plot_surface(X, Y, Z, rcount=40, ccount=40,
linewidth=0, antialiased=False)
ax.set_zlim3d(-1, 1)
@check_figures_equal(extensions=['png'])
def test_tight_layout_text(fig_test, fig_ref):
# text is currently ignored in tight layout. So the order of text() and
# tight_layout() calls should not influence the result.
ax1 = fig_test.add_subplot(projection='3d')
ax1.text(.5, .5, .5, s='some string')
fig_test.tight_layout()
ax2 = fig_ref.add_subplot(projection='3d')
fig_ref.tight_layout()
ax2.text(.5, .5, .5, s='some string')
@mpl3d_image_comparison(['scatter3d.png'], style='mpl20')
def test_scatter3d():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(np.arange(10), np.arange(10), np.arange(10),
c='r', marker='o')
x = y = z = np.arange(10, 20)
ax.scatter(x, y, z, c='b', marker='^')
z[-1] = 0 # Check that scatter() copies the data.
# Ensure empty scatters do not break.
ax.scatter([], [], [], c='r', marker='X')
@mpl3d_image_comparison(['scatter3d_color.png'], style='mpl20')
def test_scatter3d_color():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
# Check that 'none' color works; these two should overlay to produce the
# same as setting just `color`.
ax.scatter(np.arange(10), np.arange(10), np.arange(10),
facecolor='r', edgecolor='none', marker='o')
ax.scatter(np.arange(10), np.arange(10), np.arange(10),
facecolor='none', edgecolor='r', marker='o')
ax.scatter(np.arange(10, 20), np.arange(10, 20), np.arange(10, 20),
color='b', marker='s')
@mpl3d_image_comparison(['scatter3d_linewidth.png'], style='mpl20')
def test_scatter3d_linewidth():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
# Check that array-like linewidth can be set
ax.scatter(np.arange(10), np.arange(10), np.arange(10),
marker='o', linewidth=np.arange(10))
@check_figures_equal(extensions=['png'])
def test_scatter3d_linewidth_modification(fig_ref, fig_test):
# Changing Path3DCollection linewidths with array-like post-creation
# should work correctly.
ax_test = fig_test.add_subplot(projection='3d')
c = ax_test.scatter(np.arange(10), np.arange(10), np.arange(10),
marker='o')
c.set_linewidths(np.arange(10))
ax_ref = fig_ref.add_subplot(projection='3d')
ax_ref.scatter(np.arange(10), np.arange(10), np.arange(10), marker='o',
linewidths=np.arange(10))
@check_figures_equal(extensions=['png'])
def test_scatter3d_modification(fig_ref, fig_test):
# Changing Path3DCollection properties post-creation should work correctly.
ax_test = fig_test.add_subplot(projection='3d')
c = ax_test.scatter(np.arange(10), np.arange(10), np.arange(10),
marker='o')
c.set_facecolor('C1')
c.set_edgecolor('C2')
c.set_alpha([0.3, 0.7] * 5)
assert c.get_depthshade()
c.set_depthshade(False)
assert not c.get_depthshade()
c.set_sizes(np.full(10, 75))
c.set_linewidths(3)
ax_ref = fig_ref.add_subplot(projection='3d')
ax_ref.scatter(np.arange(10), np.arange(10), np.arange(10), marker='o',
facecolor='C1', edgecolor='C2', alpha=[0.3, 0.7] * 5,
depthshade=False, s=75, linewidths=3)
@pytest.mark.parametrize('depthshade', [True, False])
@check_figures_equal(extensions=['png'])
def test_scatter3d_sorting(fig_ref, fig_test, depthshade):
"""Test that marker properties are correctly sorted."""
y, x = np.mgrid[:10, :10]
z = np.arange(x.size).reshape(x.shape)
sizes = np.full(z.shape, 25)
sizes[0::2, 0::2] = 100
sizes[1::2, 1::2] = 100
facecolors = np.full(z.shape, 'C0')
facecolors[:5, :5] = 'C1'
facecolors[6:, :4] = 'C2'
facecolors[6:, 6:] = 'C3'
edgecolors = np.full(z.shape, 'C4')
edgecolors[1:5, 1:5] = 'C5'
edgecolors[5:9, 1:5] = 'C6'
edgecolors[5:9, 5:9] = 'C7'
linewidths = np.full(z.shape, 2)
linewidths[0::2, 0::2] = 5
linewidths[1::2, 1::2] = 5
x, y, z, sizes, facecolors, edgecolors, linewidths = [
a.flatten()
for a in [x, y, z, sizes, facecolors, edgecolors, linewidths]
]
ax_ref = fig_ref.add_subplot(projection='3d')
sets = (np.unique(a) for a in [sizes, facecolors, edgecolors, linewidths])
for s, fc, ec, lw in itertools.product(*sets):
subset = (
(sizes != s) |
(facecolors != fc) |
(edgecolors != ec) |
(linewidths != lw)
)
subset = np.ma.masked_array(z, subset, dtype=float)
# When depth shading is disabled, the colors are passed through as
# single-item lists; this triggers single path optimization. The
# following reshaping is a hack to disable that, since the optimization
# would not occur for the full scatter which has multiple colors.
fc = np.repeat(fc, sum(~subset.mask))
ax_ref.scatter(x, y, subset, s=s, fc=fc, ec=ec, lw=lw, alpha=1,
depthshade=depthshade)
ax_test = fig_test.add_subplot(projection='3d')
ax_test.scatter(x, y, z, s=sizes, fc=facecolors, ec=edgecolors,
lw=linewidths, alpha=1, depthshade=depthshade)
@pytest.mark.parametrize('azim', [-50, 130]) # yellow first, blue first
@check_figures_equal(extensions=['png'])
def test_marker_draw_order_data_reversed(fig_test, fig_ref, azim):
"""
Test that the draw order does not depend on the data point order.
For the given viewing angle at azim=-50, the yellow marker should be in
front. For azim=130, the blue marker should be in front.
"""
x = [-1, 1]
y = [1, -1]
z = [0, 0]
color = ['b', 'y']
ax = fig_test.add_subplot(projection='3d')
ax.scatter(x, y, z, s=3500, c=color)
ax.view_init(elev=0, azim=azim, roll=0)
ax = fig_ref.add_subplot(projection='3d')
ax.scatter(x[::-1], y[::-1], z[::-1], s=3500, c=color[::-1])
ax.view_init(elev=0, azim=azim, roll=0)
@check_figures_equal(extensions=['png'])
def test_marker_draw_order_view_rotated(fig_test, fig_ref):
"""
Test that the draw order changes with the direction.
If we rotate *azim* by 180 degrees and exchange the colors, the plot
plot should look the same again.
"""
azim = 130
x = [-1, 1]
y = [1, -1]
z = [0, 0]
color = ['b', 'y']
ax = fig_test.add_subplot(projection='3d')
# axis are not exactly invariant under 180 degree rotation -> deactivate
ax.set_axis_off()
ax.scatter(x, y, z, s=3500, c=color)
ax.view_init(elev=0, azim=azim, roll=0)
ax = fig_ref.add_subplot(projection='3d')
ax.set_axis_off()
ax.scatter(x, y, z, s=3500, c=color[::-1]) # color reversed
ax.view_init(elev=0, azim=azim - 180, roll=0) # view rotated by 180 deg
@mpl3d_image_comparison(['plot_3d_from_2d.png'], tol=0.015, style='mpl20')
def test_plot_3d_from_2d():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
xs = np.arange(0, 5)
ys = np.arange(5, 10)
ax.plot(xs, ys, zs=0, zdir='x')
ax.plot(xs, ys, zs=0, zdir='y')
@mpl3d_image_comparison(['surface3d.png'], style='mpl20')
def test_surface3d():
# Remove this line when this test image is regenerated.
plt.rcParams['pcolormesh.snap'] = False
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.hypot(X, Y)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rcount=40, ccount=40, cmap=cm.coolwarm,
lw=0, antialiased=False)
ax.set_zlim(-1.01, 1.01)
fig.colorbar(surf, shrink=0.5, aspect=5)
@image_comparison(['surface3d_label_offset_tick_position.png'], style='mpl20')
def test_surface3d_label_offset_tick_position():
ax = plt.figure().add_subplot(projection="3d")
x, y = np.mgrid[0:6 * np.pi:0.25, 0:4 * np.pi:0.25]
z = np.sqrt(np.abs(np.cos(x) + np.cos(y)))
ax.plot_surface(x * 1e5, y * 1e6, z * 1e8, cmap='autumn', cstride=2, rstride=2)
ax.set_xlabel("X label")
ax.set_ylabel("Y label")
ax.set_zlabel("Z label")
ax.figure.canvas.draw()
@mpl3d_image_comparison(['surface3d_shaded.png'], style='mpl20')
def test_surface3d_shaded():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X ** 2 + Y ** 2)
Z = np.sin(R)
ax.plot_surface(X, Y, Z, rstride=5, cstride=5,
color=[0.25, 1, 0.25], lw=1, antialiased=False)
ax.set_zlim(-1.01, 1.01)
@mpl3d_image_comparison(['surface3d_masked.png'], style='mpl20')
def test_surface3d_masked():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
y = [1, 2, 3, 4, 5, 6, 7, 8]
x, y = np.meshgrid(x, y)
matrix = np.array(
[
[-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[-1, 1, 2, 3, 4, 4, 4, 3, 2, 1, 1],
[-1, -1., 4, 5, 6, 8, 6, 5, 4, 3, -1.],
[-1, -1., 7, 8, 11, 12, 11, 8, 7, -1., -1.],
[-1, -1., 8, 9, 10, 16, 10, 9, 10, 7, -1.],
[-1, -1., -1., 12, 16, 20, 16, 12, 11, -1., -1.],
[-1, -1., -1., -1., 22, 24, 22, 20, 18, -1., -1.],
[-1, -1., -1., -1., -1., 28, 26, 25, -1., -1., -1.],
]
)
z = np.ma.masked_less(matrix, 0)
norm = mcolors.Normalize(vmax=z.max(), vmin=z.min())
colors = mpl.colormaps["plasma"](norm(z))
ax.plot_surface(x, y, z, facecolors=colors)
ax.view_init(30, -80, 0)
@check_figures_equal(extensions=["png"])
def test_plot_surface_None_arg(fig_test, fig_ref):
x, y = np.meshgrid(np.arange(5), np.arange(5))
z = x + y
ax_test = fig_test.add_subplot(projection='3d')
ax_test.plot_surface(x, y, z, facecolors=None)
ax_ref = fig_ref.add_subplot(projection='3d')
ax_ref.plot_surface(x, y, z)
@mpl3d_image_comparison(['surface3d_masked_strides.png'], style='mpl20')
def test_surface3d_masked_strides():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
x, y = np.mgrid[-6:6.1:1, -6:6.1:1]
z = np.ma.masked_less(x * y, 2)
ax.plot_surface(x, y, z, rstride=4, cstride=4)
ax.view_init(60, -45, 0)
@mpl3d_image_comparison(['text3d.png'], remove_text=False, style='mpl20')
def test_text3d():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
zdirs = (None, 'x', 'y', 'z', (1, 1, 0), (1, 1, 1))
xs = (2, 6, 4, 9, 7, 2)
ys = (6, 4, 8, 7, 2, 2)
zs = (4, 2, 5, 6, 1, 7)
for zdir, x, y, z in zip(zdirs, xs, ys, zs):
label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir)
ax.text(x, y, z, label, zdir)
ax.text(1, 1, 1, "red", color='red')
ax.text2D(0.05, 0.95, "2D Text", transform=ax.transAxes)
ax.set_xlim3d(0, 10)
ax.set_ylim3d(0, 10)
ax.set_zlim3d(0, 10)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
@check_figures_equal(extensions=['png'])
def test_text3d_modification(fig_ref, fig_test):
# Modifying the Text position after the fact should work the same as
# setting it directly.
zdirs = (None, 'x', 'y', 'z', (1, 1, 0), (1, 1, 1))
xs = (2, 6, 4, 9, 7, 2)
ys = (6, 4, 8, 7, 2, 2)
zs = (4, 2, 5, 6, 1, 7)
ax_test = fig_test.add_subplot(projection='3d')
ax_test.set_xlim3d(0, 10)
ax_test.set_ylim3d(0, 10)
ax_test.set_zlim3d(0, 10)
for zdir, x, y, z in zip(zdirs, xs, ys, zs):
t = ax_test.text(0, 0, 0, f'({x}, {y}, {z}), dir={zdir}')
t.set_position_3d((x, y, z), zdir=zdir)
ax_ref = fig_ref.add_subplot(projection='3d')
ax_ref.set_xlim3d(0, 10)
ax_ref.set_ylim3d(0, 10)
ax_ref.set_zlim3d(0, 10)
for zdir, x, y, z in zip(zdirs, xs, ys, zs):
ax_ref.text(x, y, z, f'({x}, {y}, {z}), dir={zdir}', zdir=zdir)
@mpl3d_image_comparison(['trisurf3d.png'], tol=0.061, style='mpl20')
def test_trisurf3d():
n_angles = 36
n_radii = 8
radii = np.linspace(0.125, 1.0, n_radii)
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi/n_angles
x = np.append(0, (radii*np.cos(angles)).flatten())
y = np.append(0, (radii*np.sin(angles)).flatten())
z = np.sin(-x*y)
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.2)
@mpl3d_image_comparison(['trisurf3d_shaded.png'], tol=0.03, style='mpl20')
def test_trisurf3d_shaded():
n_angles = 36
n_radii = 8
radii = np.linspace(0.125, 1.0, n_radii)
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi/n_angles
x = np.append(0, (radii*np.cos(angles)).flatten())
y = np.append(0, (radii*np.sin(angles)).flatten())
z = np.sin(-x*y)
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.plot_trisurf(x, y, z, color=[1, 0.5, 0], linewidth=0.2)
@mpl3d_image_comparison(['wireframe3d.png'], style='mpl20')
def test_wireframe3d():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rcount=13, ccount=13)
@mpl3d_image_comparison(['wireframe3dzerocstride.png'], style='mpl20')
def test_wireframe3dzerocstride():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rcount=13, ccount=0)
@mpl3d_image_comparison(['wireframe3dzerorstride.png'], style='mpl20')
def test_wireframe3dzerorstride():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rstride=0, cstride=10)
def test_wireframe3dzerostrideraises():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
with pytest.raises(ValueError):
ax.plot_wireframe(X, Y, Z, rstride=0, cstride=0)
def test_mixedsamplesraises():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
with pytest.raises(ValueError):
ax.plot_wireframe(X, Y, Z, rstride=10, ccount=50)
with pytest.raises(ValueError):
ax.plot_surface(X, Y, Z, cstride=50, rcount=10)
# remove tolerance when regenerating the test image
@mpl3d_image_comparison(['quiver3d.png'], style='mpl20', tol=0.003)
def test_quiver3d():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
pivots = ['tip', 'middle', 'tail']
colors = ['tab:blue', 'tab:orange', 'tab:green']
for i, (pivot, color) in enumerate(zip(pivots, colors)):
x, y, z = np.meshgrid([-0.5, 0.5], [-0.5, 0.5], [-0.5, 0.5])
u = -x
v = -y
w = -z
# Offset each set in z direction
z += 2 * i
ax.quiver(x, y, z, u, v, w, length=1, pivot=pivot, color=color)
ax.scatter(x, y, z, color=color)
ax.set_xlim(-3, 3)
ax.set_ylim(-3, 3)
ax.set_zlim(-1, 5)
@check_figures_equal(extensions=["png"])
def test_quiver3d_empty(fig_test, fig_ref):
fig_ref.add_subplot(projection='3d')
x = y = z = u = v = w = []
ax = fig_test.add_subplot(projection='3d')
ax.quiver(x, y, z, u, v, w, length=0.1, pivot='tip', normalize=True)
@mpl3d_image_comparison(['quiver3d_masked.png'], style='mpl20')
def test_quiver3d_masked():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
# Using mgrid here instead of ogrid because masked_where doesn't
# seem to like broadcasting very much...
x, y, z = np.mgrid[-1:0.8:10j, -1:0.8:10j, -1:0.6:3j]
u = np.sin(np.pi * x) * np.cos(np.pi * y) * np.cos(np.pi * z)
v = -np.cos(np.pi * x) * np.sin(np.pi * y) * np.cos(np.pi * z)
w = (2/3)**0.5 * np.cos(np.pi * x) * np.cos(np.pi * y) * np.sin(np.pi * z)
u = np.ma.masked_where((-0.4 < x) & (x < 0.1), u, copy=False)
v = np.ma.masked_where((0.1 < y) & (y < 0.7), v, copy=False)
ax.quiver(x, y, z, u, v, w, length=0.1, pivot='tip', normalize=True)
@mpl3d_image_comparison(['quiver3d_colorcoded.png'], style='mpl20')
def test_quiver3d_colorcoded():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
x = y = dx = dz = np.zeros(10)
z = dy = np.arange(10.)
color = plt.cm.Reds(dy/dy.max())
ax.quiver(x, y, z, dx, dy, dz, colors=color)
ax.set_ylim(0, 10)
def test_patch_modification():
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
circle = Circle((0, 0))
ax.add_patch(circle)
art3d.patch_2d_to_3d(circle)
circle.set_facecolor((1.0, 0.0, 0.0, 1))
assert mcolors.same_color(circle.get_facecolor(), (1, 0, 0, 1))
fig.canvas.draw()
assert mcolors.same_color(circle.get_facecolor(), (1, 0, 0, 1))
@check_figures_equal(extensions=['png'])
def test_patch_collection_modification(fig_test, fig_ref):
# Test that modifying Patch3DCollection properties after creation works.
patch1 = Circle((0, 0), 0.05)
patch2 = Circle((0.1, 0.1), 0.03)
facecolors = np.array([[0., 0.5, 0., 1.], [0.5, 0., 0., 0.5]])
c = art3d.Patch3DCollection([patch1, patch2], linewidths=3)
ax_test = fig_test.add_subplot(projection='3d')
ax_test.add_collection3d(c)
c.set_edgecolor('C2')
c.set_facecolor(facecolors)
c.set_alpha(0.7)
assert c.get_depthshade()
c.set_depthshade(False)
assert not c.get_depthshade()
patch1 = Circle((0, 0), 0.05)
patch2 = Circle((0.1, 0.1), 0.03)
facecolors = np.array([[0., 0.5, 0., 1.], [0.5, 0., 0., 0.5]])
c = art3d.Patch3DCollection([patch1, patch2], linewidths=3,
edgecolor='C2', facecolor=facecolors,
alpha=0.7, depthshade=False)
ax_ref = fig_ref.add_subplot(projection='3d')
ax_ref.add_collection3d(c)
def test_poly3dcollection_verts_validation():
poly = [[0, 0, 1], [0, 1, 1], [0, 1, 0], [0, 0, 0]]
with pytest.raises(ValueError, match=r'list of \(N, 3\) array-like'):
art3d.Poly3DCollection(poly) # should be Poly3DCollection([poly])
poly = np.array(poly, dtype=float)
with pytest.raises(ValueError, match=r'list of \(N, 3\) array-like'):
art3d.Poly3DCollection(poly) # should be Poly3DCollection([poly])
@mpl3d_image_comparison(['poly3dcollection_closed.png'], style='mpl20')
def test_poly3dcollection_closed():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
poly1 = np.array([[0, 0, 1], [0, 1, 1], [0, 0, 0]], float)
poly2 = np.array([[0, 1, 1], [1, 1, 1], [1, 1, 0]], float)
c1 = art3d.Poly3DCollection([poly1], linewidths=3, edgecolor='k',
facecolor=(0.5, 0.5, 1, 0.5), closed=True)
c2 = art3d.Poly3DCollection([poly2], linewidths=3, edgecolor='k',
facecolor=(1, 0.5, 0.5, 0.5), closed=False)
ax.add_collection3d(c1)
ax.add_collection3d(c2)
def test_poly_collection_2d_to_3d_empty():
poly = PolyCollection([])
art3d.poly_collection_2d_to_3d(poly)
assert isinstance(poly, art3d.Poly3DCollection)
assert poly.get_paths() == []
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
ax.add_artist(poly)
minz = poly.do_3d_projection()
assert np.isnan(minz)
# Ensure drawing actually works.
fig.canvas.draw()
@mpl3d_image_comparison(['poly3dcollection_alpha.png'], style='mpl20')
def test_poly3dcollection_alpha():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
poly1 = np.array([[0, 0, 1], [0, 1, 1], [0, 0, 0]], float)
poly2 = np.array([[0, 1, 1], [1, 1, 1], [1, 1, 0]], float)
c1 = art3d.Poly3DCollection([poly1], linewidths=3, edgecolor='k',
facecolor=(0.5, 0.5, 1), closed=True)
c1.set_alpha(0.5)
c2 = art3d.Poly3DCollection([poly2], linewidths=3, closed=False)
# Post-creation modification should work.
c2.set_facecolor((1, 0.5, 0.5))
c2.set_edgecolor('k')
c2.set_alpha(0.5)
ax.add_collection3d(c1)
ax.add_collection3d(c2)
@mpl3d_image_comparison(['add_collection3d_zs_array.png'], style='mpl20')
def test_add_collection3d_zs_array():
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
points = np.column_stack([x, y, z]).reshape(-1, 1, 3)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
norm = plt.Normalize(0, 2*np.pi)
# 2D LineCollection from x & y values
lc = LineCollection(segments[:, :, :2], cmap='twilight', norm=norm)
lc.set_array(np.mod(theta, 2*np.pi))
# Add 2D collection at z values to ax
line = ax.add_collection3d(lc, zs=segments[:, :, 2])
assert line is not None
ax.set_xlim(-5, 5)
ax.set_ylim(-4, 6)
ax.set_zlim(-2, 2)
@mpl3d_image_comparison(['add_collection3d_zs_scalar.png'], style='mpl20')
def test_add_collection3d_zs_scalar():
theta = np.linspace(0, 2 * np.pi, 100)
z = 1
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
points = np.column_stack([x, y]).reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
norm = plt.Normalize(0, 2*np.pi)
lc = LineCollection(segments, cmap='twilight', norm=norm)
lc.set_array(theta)
line = ax.add_collection3d(lc, zs=z)
assert line is not None
ax.set_xlim(-5, 5)
ax.set_ylim(-4, 6)
ax.set_zlim(0, 2)
@mpl3d_image_comparison(['axes3d_labelpad.png'],
remove_text=False, style='mpl20')
def test_axes3d_labelpad():
fig = plt.figure()
ax = fig.add_axes(Axes3D(fig))
# labelpad respects rcParams
assert ax.xaxis.labelpad == mpl.rcParams['axes.labelpad']
# labelpad can be set in set_label
ax.set_xlabel('X LABEL', labelpad=10)
assert ax.xaxis.labelpad == 10
ax.set_ylabel('Y LABEL')
ax.set_zlabel('Z LABEL', labelpad=20)
assert ax.zaxis.labelpad == 20
assert ax.get_zlabel() == 'Z LABEL'
# or manually
ax.yaxis.labelpad = 20
ax.zaxis.labelpad = -40
# Tick labels also respect tick.pad (also from rcParams)
for i, tick in enumerate(ax.yaxis.get_major_ticks()):
tick.set_pad(tick.get_pad() - i * 5)
@mpl3d_image_comparison(['axes3d_cla.png'], remove_text=False, style='mpl20')
def test_axes3d_cla():
# fixed in pull request 4553
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='3d')
ax.set_axis_off()
ax.cla() # make sure the axis displayed is 3D (not 2D)
@mpl3d_image_comparison(['axes3d_rotated.png'],
remove_text=False, style='mpl20')
def test_axes3d_rotated():
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='3d')
ax.view_init(90, 45, 0) # look down, rotated. Should be square
def test_plotsurface_1d_raises():
x = np.linspace(0.5, 10, num=100)
y = np.linspace(0.5, 10, num=100)
X, Y = np.meshgrid(x, y)
z = np.random.randn(100)
fig = plt.figure(figsize=(14, 6))
ax = fig.add_subplot(1, 2, 1, projection='3d')
with pytest.raises(ValueError):
ax.plot_surface(X, Y, z)
def _test_proj_make_M():
# eye point
E = np.array([1000, -1000, 2000])
R = np.array([100, 100, 100])
V = np.array([0, 0, 1])
roll = 0
u, v, w = proj3d._view_axes(E, R, V, roll)
viewM = proj3d._view_transformation_uvw(u, v, w, E)
perspM = proj3d._persp_transformation(100, -100, 1)
M = np.dot(perspM, viewM)
return M
def test_proj_transform():
M = _test_proj_make_M()
invM = np.linalg.inv(M)
xs = np.array([0, 1, 1, 0, 0, 0, 1, 1, 0, 0]) * 300.0
ys = np.array([0, 0, 1, 1, 0, 0, 0, 1, 1, 0]) * 300.0
zs = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) * 300.0
txs, tys, tzs = proj3d.proj_transform(xs, ys, zs, M)
ixs, iys, izs = proj3d.inv_transform(txs, tys, tzs, invM)
np.testing.assert_almost_equal(ixs, xs)
np.testing.assert_almost_equal(iys, ys)
np.testing.assert_almost_equal(izs, zs)
def _test_proj_draw_axes(M, s=1, *args, **kwargs):
xs = [0, s, 0, 0]
ys = [0, 0, s, 0]
zs = [0, 0, 0, s]
txs, tys, tzs = proj3d.proj_transform(xs, ys, zs, M)
o, ax, ay, az = zip(txs, tys)
lines = [(o, ax), (o, ay), (o, az)]
fig, ax = plt.subplots(*args, **kwargs)
linec = LineCollection(lines)
ax.add_collection(linec)
for x, y, t in zip(txs, tys, ['o', 'x', 'y', 'z']):
ax.text(x, y, t)
return fig, ax
@mpl3d_image_comparison(['proj3d_axes_cube.png'], style='mpl20')
def test_proj_axes_cube():
M = _test_proj_make_M()
ts = '0 1 2 3 0 4 5 6 7 4'.split()
xs = np.array([0, 1, 1, 0, 0, 0, 1, 1, 0, 0]) * 300.0
ys = np.array([0, 0, 1, 1, 0, 0, 0, 1, 1, 0]) * 300.0
zs = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) * 300.0
txs, tys, tzs = proj3d.proj_transform(xs, ys, zs, M)
fig, ax = _test_proj_draw_axes(M, s=400)
ax.scatter(txs, tys, c=tzs)
ax.plot(txs, tys, c='r')
for x, y, t in zip(txs, tys, ts):
ax.text(x, y, t)
ax.set_xlim(-0.2, 0.2)
ax.set_ylim(-0.2, 0.2)
@mpl3d_image_comparison(['proj3d_axes_cube_ortho.png'], style='mpl20')
def test_proj_axes_cube_ortho():
E = np.array([200, 100, 100])
R = np.array([0, 0, 0])
V = np.array([0, 0, 1])
roll = 0
u, v, w = proj3d._view_axes(E, R, V, roll)
viewM = proj3d._view_transformation_uvw(u, v, w, E)
orthoM = proj3d._ortho_transformation(-1, 1)
M = np.dot(orthoM, viewM)
ts = '0 1 2 3 0 4 5 6 7 4'.split()
xs = np.array([0, 1, 1, 0, 0, 0, 1, 1, 0, 0]) * 100
ys = np.array([0, 0, 1, 1, 0, 0, 0, 1, 1, 0]) * 100
zs = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) * 100
txs, tys, tzs = proj3d.proj_transform(xs, ys, zs, M)
fig, ax = _test_proj_draw_axes(M, s=150)
ax.scatter(txs, tys, s=300-tzs)
ax.plot(txs, tys, c='r')
for x, y, t in zip(txs, tys, ts):
ax.text(x, y, t)
ax.set_xlim(-200, 200)
ax.set_ylim(-200, 200)
def test_world():
xmin, xmax = 100, 120
ymin, ymax = -100, 100
zmin, zmax = 0.1, 0.2
M = proj3d.world_transformation(xmin, xmax, ymin, ymax, zmin, zmax)
np.testing.assert_allclose(M,
[[5e-2, 0, 0, -5],
[0, 5e-3, 0, 5e-1],
[0, 0, 1e1, -1],
[0, 0, 0, 1]])
def test_autoscale():
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
assert ax.get_zscale() == 'linear'
ax.margins(x=0, y=.1, z=.2)
ax.plot([0, 1], [0, 1], [0, 1])
assert ax.get_w_lims() == (0, 1, -.1, 1.1, -.2, 1.2)
ax.autoscale(False)
ax.set_autoscalez_on(True)
ax.plot([0, 2], [0, 2], [0, 2])
assert ax.get_w_lims() == (0, 1, -.1, 1.1, -.4, 2.4)
ax.autoscale(axis='x')
ax.plot([0, 2], [0, 2], [0, 2])
assert ax.get_w_lims() == (0, 2, -.1, 1.1, -.4, 2.4)
@pytest.mark.parametrize('axis', ('x', 'y', 'z'))
@pytest.mark.parametrize('auto', (True, False, None))
def test_unautoscale(axis, auto):
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
x = np.arange(100)
y = np.linspace(-0.1, 0.1, 100)
ax.scatter(x, y)
get_autoscale_on = getattr(ax, f'get_autoscale{axis}_on')
set_lim = getattr(ax, f'set_{axis}lim')
get_lim = getattr(ax, f'get_{axis}lim')
post_auto = get_autoscale_on() if auto is None else auto
set_lim((-0.5, 0.5), auto=auto)
assert post_auto == get_autoscale_on()
fig.canvas.draw()
np.testing.assert_array_equal(get_lim(), (-0.5, 0.5))
def test_axes3d_focal_length_checks():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
with pytest.raises(ValueError):
ax.set_proj_type('persp', focal_length=0)
with pytest.raises(ValueError):
ax.set_proj_type('ortho', focal_length=1)
@mpl3d_image_comparison(['axes3d_focal_length.png'],
remove_text=False, style='mpl20')
def test_axes3d_focal_length():
fig, axs = plt.subplots(1, 2, subplot_kw={'projection': '3d'})
axs[0].set_proj_type('persp', focal_length=np.inf)
axs[1].set_proj_type('persp', focal_length=0.15)
@mpl3d_image_comparison(['axes3d_ortho.png'], remove_text=False, style='mpl20')
def test_axes3d_ortho():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.set_proj_type('ortho')
@mpl3d_image_comparison(['axes3d_isometric.png'], style='mpl20')
def test_axes3d_isometric():
from itertools import combinations, product
fig, ax = plt.subplots(subplot_kw=dict(
projection='3d',
proj_type='ortho',
box_aspect=(4, 4, 4)
))
r = (-1, 1) # stackoverflow.com/a/11156353
for s, e in combinations(np.array(list(product(r, r, r))), 2):
if abs(s - e).sum() == r[1] - r[0]:
ax.plot3D(*zip(s, e), c='k')
ax.view_init(elev=np.degrees(np.arctan(1. / np.sqrt(2))), azim=-45, roll=0)
ax.grid(True)
@pytest.mark.parametrize('value', [np.inf, np.nan])
@pytest.mark.parametrize(('setter', 'side'), [
('set_xlim3d', 'left'),
('set_xlim3d', 'right'),
('set_ylim3d', 'bottom'),
('set_ylim3d', 'top'),
('set_zlim3d', 'bottom'),
('set_zlim3d', 'top'),
])
def test_invalid_axes_limits(setter, side, value):
limit = {side: value}
fig = plt.figure()
obj = fig.add_subplot(projection='3d')
with pytest.raises(ValueError):
getattr(obj, setter)(**limit)
class TestVoxels:
@mpl3d_image_comparison(['voxels-simple.png'], style='mpl20')
def test_simple(self):
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
x, y, z = np.indices((5, 4, 3))
voxels = (x == y) | (y == z)
ax.voxels(voxels)
@mpl3d_image_comparison(['voxels-edge-style.png'], style='mpl20')
def test_edge_style(self):
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
x, y, z = np.indices((5, 5, 4))
voxels = ((x - 2)**2 + (y - 2)**2 + (z-1.5)**2) < 2.2**2
v = ax.voxels(voxels, linewidths=3, edgecolor='C1')
# change the edge color of one voxel
v[max(v.keys())].set_edgecolor('C2')
@mpl3d_image_comparison(['voxels-named-colors.png'], style='mpl20')
def test_named_colors(self):
"""Test with colors set to a 3D object array of strings."""
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
x, y, z = np.indices((10, 10, 10))
voxels = (x == y) | (y == z)
voxels = voxels & ~(x * y * z < 1)
colors = np.full((10, 10, 10), 'C0', dtype=np.object_)
colors[(x < 5) & (y < 5)] = '0.25'
colors[(x + z) < 10] = 'cyan'
ax.voxels(voxels, facecolors=colors)
@mpl3d_image_comparison(['voxels-rgb-data.png'], style='mpl20')
def test_rgb_data(self):
"""Test with colors set to a 4d float array of rgb data."""
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
x, y, z = np.indices((10, 10, 10))
voxels = (x == y) | (y == z)
colors = np.zeros((10, 10, 10, 3))
colors[..., 0] = x / 9
colors[..., 1] = y / 9
colors[..., 2] = z / 9
ax.voxels(voxels, facecolors=colors)
@mpl3d_image_comparison(['voxels-alpha.png'], style='mpl20')
def test_alpha(self):
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
x, y, z = np.indices((10, 10, 10))
v1 = x == y
v2 = np.abs(x - y) < 2
voxels = v1 | v2
colors = np.zeros((10, 10, 10, 4))
colors[v2] = [1, 0, 0, 0.5]
colors[v1] = [0, 1, 0, 0.5]
v = ax.voxels(voxels, facecolors=colors)
assert type(v) is dict
for coord, poly in v.items():
assert voxels[coord], "faces returned for absent voxel"
assert isinstance(poly, art3d.Poly3DCollection)
@mpl3d_image_comparison(['voxels-xyz.png'],
tol=0.01, remove_text=False, style='mpl20')
def test_xyz(self):
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
def midpoints(x):
sl = ()
for i in range(x.ndim):
x = (x[sl + np.index_exp[:-1]] +
x[sl + np.index_exp[1:]]) / 2.0
sl += np.index_exp[:]
return x
# prepare some coordinates, and attach rgb values to each
r, g, b = np.indices((17, 17, 17)) / 16.0
rc = midpoints(r)
gc = midpoints(g)
bc = midpoints(b)
# define a sphere about [0.5, 0.5, 0.5]
sphere = (rc - 0.5)**2 + (gc - 0.5)**2 + (bc - 0.5)**2 < 0.5**2
# combine the color components
colors = np.zeros(sphere.shape + (3,))
colors[..., 0] = rc
colors[..., 1] = gc
colors[..., 2] = bc
# and plot everything
ax.voxels(r, g, b, sphere,
facecolors=colors,
edgecolors=np.clip(2*colors - 0.5, 0, 1), # brighter
linewidth=0.5)
def test_calling_conventions(self):
x, y, z = np.indices((3, 4, 5))
filled = np.ones((2, 3, 4))
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
# all the valid calling conventions
for kw in (dict(), dict(edgecolor='k')):
ax.voxels(filled, **kw)
ax.voxels(filled=filled, **kw)
ax.voxels(x, y, z, filled, **kw)
ax.voxels(x, y, z, filled=filled, **kw)
# duplicate argument
with pytest.raises(TypeError, match='voxels'):
ax.voxels(x, y, z, filled, filled=filled)
# missing arguments
with pytest.raises(TypeError, match='voxels'):
ax.voxels(x, y)
# x, y, z are positional only - this passes them on as attributes of
# Poly3DCollection
with pytest.raises(AttributeError):
ax.voxels(filled=filled, x=x, y=y, z=z)
def test_line3d_set_get_data_3d():
x, y, z = [0, 1], [2, 3], [4, 5]
x2, y2, z2 = [6, 7], [8, 9], [10, 11]
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
lines = ax.plot(x, y, z)
line = lines[0]
np.testing.assert_array_equal((x, y, z), line.get_data_3d())
line.set_data_3d(x2, y2, z2)
np.testing.assert_array_equal((x2, y2, z2), line.get_data_3d())
line.set_xdata(x)
line.set_ydata(y)
line.set_3d_properties(zs=z, zdir='z')
np.testing.assert_array_equal((x, y, z), line.get_data_3d())
line.set_3d_properties(zs=0, zdir='z')
np.testing.assert_array_equal((x, y, np.zeros_like(z)), line.get_data_3d())
@check_figures_equal(extensions=["png"])
def test_inverted(fig_test, fig_ref):
# Plot then invert.
ax = fig_test.add_subplot(projection="3d")
ax.plot([1, 1, 10, 10], [1, 10, 10, 10], [1, 1, 1, 10])
ax.invert_yaxis()
# Invert then plot.
ax = fig_ref.add_subplot(projection="3d")
ax.invert_yaxis()
ax.plot([1, 1, 10, 10], [1, 10, 10, 10], [1, 1, 1, 10])
def test_inverted_cla():
# GitHub PR #5450. Setting autoscale should reset
# axes to be non-inverted.
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
# 1. test that a new axis is not inverted per default
assert not ax.xaxis_inverted()
assert not ax.yaxis_inverted()
assert not ax.zaxis_inverted()
ax.set_xlim(1, 0)
ax.set_ylim(1, 0)
ax.set_zlim(1, 0)
assert ax.xaxis_inverted()
assert ax.yaxis_inverted()
assert ax.zaxis_inverted()
ax.cla()
assert not ax.xaxis_inverted()
assert not ax.yaxis_inverted()
assert not ax.zaxis_inverted()
def test_ax3d_tickcolour():
fig = plt.figure()
ax = Axes3D(fig)
ax.tick_params(axis='x', colors='red')
ax.tick_params(axis='y', colors='red')
ax.tick_params(axis='z', colors='red')
fig.canvas.draw()
for tick in ax.xaxis.get_major_ticks():
assert tick.tick1line._color == 'red'
for tick in ax.yaxis.get_major_ticks():
assert tick.tick1line._color == 'red'
for tick in ax.zaxis.get_major_ticks():
assert tick.tick1line._color == 'red'
@check_figures_equal(extensions=["png"])
def test_ticklabel_format(fig_test, fig_ref):
axs = fig_test.subplots(4, 5, subplot_kw={"projection": "3d"})
for ax in axs.flat:
ax.set_xlim(1e7, 1e7 + 10)
for row, name in zip(axs, ["x", "y", "z", "both"]):
row[0].ticklabel_format(
axis=name, style="plain")
row[1].ticklabel_format(
axis=name, scilimits=(-2, 2))
row[2].ticklabel_format(
axis=name, useOffset=not mpl.rcParams["axes.formatter.useoffset"])
row[3].ticklabel_format(
axis=name, useLocale=not mpl.rcParams["axes.formatter.use_locale"])
row[4].ticklabel_format(
axis=name,
useMathText=not mpl.rcParams["axes.formatter.use_mathtext"])
def get_formatters(ax, names):
return [getattr(ax, name).get_major_formatter() for name in names]
axs = fig_ref.subplots(4, 5, subplot_kw={"projection": "3d"})
for ax in axs.flat:
ax.set_xlim(1e7, 1e7 + 10)
for row, names in zip(
axs, [["xaxis"], ["yaxis"], ["zaxis"], ["xaxis", "yaxis", "zaxis"]]
):
for fmt in get_formatters(row[0], names):
fmt.set_scientific(False)
for fmt in get_formatters(row[1], names):
fmt.set_powerlimits((-2, 2))
for fmt in get_formatters(row[2], names):
fmt.set_useOffset(not mpl.rcParams["axes.formatter.useoffset"])
for fmt in get_formatters(row[3], names):
fmt.set_useLocale(not mpl.rcParams["axes.formatter.use_locale"])
for fmt in get_formatters(row[4], names):
fmt.set_useMathText(
not mpl.rcParams["axes.formatter.use_mathtext"])
@check_figures_equal(extensions=["png"])
def test_quiver3D_smoke(fig_test, fig_ref):
pivot = "middle"
# Make the grid
x, y, z = np.meshgrid(
np.arange(-0.8, 1, 0.2),
np.arange(-0.8, 1, 0.2),
np.arange(-0.8, 1, 0.8)
)
u = v = w = np.ones_like(x)
for fig, length in zip((fig_ref, fig_test), (1, 1.0)):
ax = fig.add_subplot(projection="3d")
ax.quiver(x, y, z, u, v, w, length=length, pivot=pivot)
@image_comparison(["minor_ticks.png"], style="mpl20")
def test_minor_ticks():
ax = plt.figure().add_subplot(projection="3d")
ax.set_xticks([0.25], minor=True)
ax.set_xticklabels(["quarter"], minor=True)
ax.set_yticks([0.33], minor=True)
ax.set_yticklabels(["third"], minor=True)
ax.set_zticks([0.50], minor=True)
ax.set_zticklabels(["half"], minor=True)
# remove tolerance when regenerating the test image
@mpl3d_image_comparison(['errorbar3d_errorevery.png'], style='mpl20', tol=0.003)
def test_errorbar3d_errorevery():
"""Tests errorevery functionality for 3D errorbars."""
t = np.arange(0, 2*np.pi+.1, 0.01)
x, y, z = np.sin(t), np.cos(3*t), np.sin(5*t)
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
estep = 15
i = np.arange(t.size)
zuplims = (i % estep == 0) & (i // estep % 3 == 0)
zlolims = (i % estep == 0) & (i // estep % 3 == 2)
ax.errorbar(x, y, z, 0.2, zuplims=zuplims, zlolims=zlolims,
errorevery=estep)
@mpl3d_image_comparison(['errorbar3d.png'], style='mpl20')
def test_errorbar3d():
"""Tests limits, color styling, and legend for 3D errorbars."""
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
d = [1, 2, 3, 4, 5]
e = [.5, .5, .5, .5, .5]
ax.errorbar(x=d, y=d, z=d, xerr=e, yerr=e, zerr=e, capsize=3,
zuplims=[False, True, False, True, True],
zlolims=[True, False, False, True, False],
yuplims=True,
ecolor='purple', label='Error lines')
ax.legend()
@image_comparison(['stem3d.png'], style='mpl20', tol=0.003)
def test_stem3d():
fig, axs = plt.subplots(2, 3, figsize=(8, 6),
constrained_layout=True,
subplot_kw={'projection': '3d'})
theta = np.linspace(0, 2*np.pi)
x = np.cos(theta - np.pi/2)
y = np.sin(theta - np.pi/2)
z = theta
for ax, zdir in zip(axs[0], ['x', 'y', 'z']):
ax.stem(x, y, z, orientation=zdir)
ax.set_title(f'orientation={zdir}')
x = np.linspace(-np.pi/2, np.pi/2, 20)
y = np.ones_like(x)
z = np.cos(x)
for ax, zdir in zip(axs[1], ['x', 'y', 'z']):
markerline, stemlines, baseline = ax.stem(
x, y, z,
linefmt='C4-.', markerfmt='C1D', basefmt='C2',
orientation=zdir)
ax.set_title(f'orientation={zdir}')
markerline.set(markerfacecolor='none', markeredgewidth=2)
baseline.set_linewidth(3)
@image_comparison(["equal_box_aspect.png"], style="mpl20")
def test_equal_box_aspect():
from itertools import product, combinations
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
# Make data
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
x = np.outer(np.cos(u), np.sin(v))
y = np.outer(np.sin(u), np.sin(v))
z = np.outer(np.ones_like(u), np.cos(v))
# Plot the surface
ax.plot_surface(x, y, z)
# draw cube
r = [-1, 1]
for s, e in combinations(np.array(list(product(r, r, r))), 2):
if np.sum(np.abs(s - e)) == r[1] - r[0]:
ax.plot3D(*zip(s, e), color="b")
# Make axes limits
xyzlim = np.column_stack(
[ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d()]
)
XYZlim = [min(xyzlim[0]), max(xyzlim[1])]
ax.set_xlim3d(XYZlim)
ax.set_ylim3d(XYZlim)
ax.set_zlim3d(XYZlim)
ax.axis('off')
ax.set_box_aspect((1, 1, 1))
with pytest.raises(ValueError, match="Argument zoom ="):
ax.set_box_aspect((1, 1, 1), zoom=-1)
def test_colorbar_pos():
num_plots = 2
fig, axs = plt.subplots(1, num_plots, figsize=(4, 5),
constrained_layout=True,
subplot_kw={'projection': '3d'})
for ax in axs:
p_tri = ax.plot_trisurf(np.random.randn(5), np.random.randn(5),
np.random.randn(5))
cbar = plt.colorbar(p_tri, ax=axs, orientation='horizontal')
fig.canvas.draw()
# check that actually on the bottom
assert cbar.ax.get_position().extents[1] < 0.2
def test_inverted_zaxis():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
assert not ax.zaxis_inverted()
assert ax.get_zlim() == (0, 1)
assert ax.get_zbound() == (0, 1)
# Change bound
ax.set_zbound((0, 2))
assert not ax.zaxis_inverted()
assert ax.get_zlim() == (0, 2)
assert ax.get_zbound() == (0, 2)
# Change invert
ax.invert_zaxis()
assert ax.zaxis_inverted()
assert ax.get_zlim() == (2, 0)
assert ax.get_zbound() == (0, 2)
# Set upper bound
ax.set_zbound(upper=1)
assert ax.zaxis_inverted()
assert ax.get_zlim() == (1, 0)
assert ax.get_zbound() == (0, 1)
# Set lower bound
ax.set_zbound(lower=2)
assert ax.zaxis_inverted()
assert ax.get_zlim() == (2, 1)
assert ax.get_zbound() == (1, 2)
def test_set_zlim():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
assert ax.get_zlim() == (0, 1)
ax.set_zlim(zmax=2)
assert ax.get_zlim() == (0, 2)
ax.set_zlim(zmin=1)
assert ax.get_zlim() == (1, 2)
with pytest.raises(
TypeError, match="Cannot pass both 'bottom' and 'zmin'"):
ax.set_zlim(bottom=0, zmin=1)
with pytest.raises(
TypeError, match="Cannot pass both 'top' and 'zmax'"):
ax.set_zlim(top=0, zmax=1)
@check_figures_equal(extensions=["png"])
def test_shared_view(fig_test, fig_ref):
elev, azim, roll = 5, 20, 30
ax1 = fig_test.add_subplot(131, projection="3d")
ax2 = fig_test.add_subplot(132, projection="3d", shareview=ax1)
ax3 = fig_test.add_subplot(133, projection="3d")
ax3.shareview(ax1)
ax2.view_init(elev=elev, azim=azim, roll=roll, share=True)
for subplot_num in (131, 132, 133):
ax = fig_ref.add_subplot(subplot_num, projection="3d")
ax.view_init(elev=elev, azim=azim, roll=roll)
def test_shared_axes_retick():
fig = plt.figure()
ax1 = fig.add_subplot(211, projection="3d")
ax2 = fig.add_subplot(212, projection="3d", sharez=ax1)
ax1.plot([0, 1], [0, 1], [0, 2])
ax2.plot([0, 1], [0, 1], [0, 2])
ax1.set_zticks([-0.5, 0, 2, 2.5])
# check that setting ticks on a shared axis is synchronized
assert ax1.get_zlim() == (-0.5, 2.5)
assert ax2.get_zlim() == (-0.5, 2.5)
def test_pan():
"""Test mouse panning using the middle mouse button."""
def convert_lim(dmin, dmax):
"""Convert min/max limits to center and range."""
center = (dmin + dmax) / 2
range_ = dmax - dmin
return center, range_
ax = plt.figure().add_subplot(projection='3d')
ax.scatter(0, 0, 0)
ax.figure.canvas.draw()
x_center0, x_range0 = convert_lim(*ax.get_xlim3d())
y_center0, y_range0 = convert_lim(*ax.get_ylim3d())
z_center0, z_range0 = convert_lim(*ax.get_zlim3d())
# move mouse diagonally to pan along all axis.
ax._button_press(
mock_event(ax, button=MouseButton.MIDDLE, xdata=0, ydata=0))
ax._on_move(
mock_event(ax, button=MouseButton.MIDDLE, xdata=1, ydata=1))
x_center, x_range = convert_lim(*ax.get_xlim3d())
y_center, y_range = convert_lim(*ax.get_ylim3d())
z_center, z_range = convert_lim(*ax.get_zlim3d())
# Ranges have not changed
assert x_range == pytest.approx(x_range0)
assert y_range == pytest.approx(y_range0)
assert z_range == pytest.approx(z_range0)
# But center positions have
assert x_center != pytest.approx(x_center0)
assert y_center != pytest.approx(y_center0)
assert z_center != pytest.approx(z_center0)
@pytest.mark.parametrize("tool,button,key,expected",
[("zoom", MouseButton.LEFT, None, # zoom in
((0.00, 0.06), (0.01, 0.07), (0.02, 0.08))),
("zoom", MouseButton.LEFT, 'x', # zoom in
((-0.01, 0.10), (-0.03, 0.08), (-0.06, 0.06))),
("zoom", MouseButton.LEFT, 'y', # zoom in
((-0.07, 0.04), (-0.03, 0.08), (0.00, 0.11))),
("zoom", MouseButton.RIGHT, None, # zoom out
((-0.09, 0.15), (-0.07, 0.17), (-0.06, 0.18))),
("pan", MouseButton.LEFT, None,
((-0.70, -0.58), (-1.03, -0.91), (-1.27, -1.15))),
("pan", MouseButton.LEFT, 'x',
((-0.96, -0.84), (-0.58, -0.46), (-0.06, 0.06))),
("pan", MouseButton.LEFT, 'y',
((0.20, 0.32), (-0.51, -0.39), (-1.27, -1.15)))])
def test_toolbar_zoom_pan(tool, button, key, expected):
# NOTE: The expected zoom values are rough ballparks of moving in the view
# to make sure we are getting the right direction of motion.
# The specific values can and should change if the zoom movement
# scaling factor gets updated.
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(0, 0, 0)
fig.canvas.draw()
xlim0, ylim0, zlim0 = ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d()
# Mouse from (0, 0) to (1, 1)
d0 = (0, 0)
d1 = (1, 1)
# Convert to screen coordinates ("s"). Events are defined only with pixel
# precision, so round the pixel values, and below, check against the
# corresponding xdata/ydata, which are close but not equal to d0/d1.
s0 = ax.transData.transform(d0).astype(int)
s1 = ax.transData.transform(d1).astype(int)
# Set up the mouse movements
start_event = MouseEvent(
"button_press_event", fig.canvas, *s0, button, key=key)
stop_event = MouseEvent(
"button_release_event", fig.canvas, *s1, button, key=key)
tb = NavigationToolbar2(fig.canvas)
if tool == "zoom":
tb.zoom()
tb.press_zoom(start_event)
tb.drag_zoom(stop_event)
tb.release_zoom(stop_event)
else:
tb.pan()
tb.press_pan(start_event)
tb.drag_pan(stop_event)
tb.release_pan(stop_event)
# Should be close, but won't be exact due to screen integer resolution
xlim, ylim, zlim = expected
assert ax.get_xlim3d() == pytest.approx(xlim, abs=0.01)
assert ax.get_ylim3d() == pytest.approx(ylim, abs=0.01)
assert ax.get_zlim3d() == pytest.approx(zlim, abs=0.01)
# Ensure that back, forward, and home buttons work
tb.back()
assert ax.get_xlim3d() == pytest.approx(xlim0)
assert ax.get_ylim3d() == pytest.approx(ylim0)
assert ax.get_zlim3d() == pytest.approx(zlim0)
tb.forward()
assert ax.get_xlim3d() == pytest.approx(xlim, abs=0.01)
assert ax.get_ylim3d() == pytest.approx(ylim, abs=0.01)
assert ax.get_zlim3d() == pytest.approx(zlim, abs=0.01)
tb.home()
assert ax.get_xlim3d() == pytest.approx(xlim0)
assert ax.get_ylim3d() == pytest.approx(ylim0)
assert ax.get_zlim3d() == pytest.approx(zlim0)
@mpl.style.context('default')
@check_figures_equal(extensions=["png"])
def test_scalarmap_update(fig_test, fig_ref):
x, y, z = np.array(list(itertools.product(*[np.arange(0, 5, 1),
np.arange(0, 5, 1),
np.arange(0, 5, 1)]))).T
c = x + y
# test
ax_test = fig_test.add_subplot(111, projection='3d')
sc_test = ax_test.scatter(x, y, z, c=c, s=40, cmap='viridis')
# force a draw
fig_test.canvas.draw()
# mark it as "stale"
sc_test.changed()
# ref
ax_ref = fig_ref.add_subplot(111, projection='3d')
sc_ref = ax_ref.scatter(x, y, z, c=c, s=40, cmap='viridis')
def test_subfigure_simple():
# smoketest that subfigures can work...
fig = plt.figure()
sf = fig.subfigures(1, 2)
ax = sf[0].add_subplot(1, 1, 1, projection='3d')
ax = sf[1].add_subplot(1, 1, 1, projection='3d', label='other')
# Update style when regenerating the test image
@image_comparison(baseline_images=['computed_zorder'], remove_text=True,
extensions=['png'], style=('mpl20'))
def test_computed_zorder():
fig = plt.figure()
ax1 = fig.add_subplot(221, projection='3d')
ax2 = fig.add_subplot(222, projection='3d')
ax2.computed_zorder = False
# create a horizontal plane
corners = ((0, 0, 0), (0, 5, 0), (5, 5, 0), (5, 0, 0))
for ax in (ax1, ax2):
tri = art3d.Poly3DCollection([corners],
facecolors='white',
edgecolors='black',
zorder=1)
ax.add_collection3d(tri)
# plot a vector
ax.plot((2, 2), (2, 2), (0, 4), c='red', zorder=2)
# plot some points
ax.scatter((3, 3), (1, 3), (1, 3), c='red', zorder=10)
ax.set_xlim((0, 5.0))
ax.set_ylim((0, 5.0))
ax.set_zlim((0, 2.5))
ax3 = fig.add_subplot(223, projection='3d')
ax4 = fig.add_subplot(224, projection='3d')
ax4.computed_zorder = False
dim = 10
X, Y = np.meshgrid((-dim, dim), (-dim, dim))
Z = np.zeros((2, 2))
angle = 0.5
X2, Y2 = np.meshgrid((-dim, dim), (0, dim))
Z2 = Y2 * angle
X3, Y3 = np.meshgrid((-dim, dim), (-dim, 0))
Z3 = Y3 * angle
r = 7
M = 1000
th = np.linspace(0, 2 * np.pi, M)
x, y, z = r * np.cos(th), r * np.sin(th), angle * r * np.sin(th)
for ax in (ax3, ax4):
ax.plot_surface(X2, Y3, Z3,
color='blue',
alpha=0.5,
linewidth=0,
zorder=-1)
ax.plot(x[y < 0], y[y < 0], z[y < 0],
lw=5,
linestyle='--',
color='green',
zorder=0)
ax.plot_surface(X, Y, Z,
color='red',
alpha=0.5,
linewidth=0,
zorder=1)
ax.plot(r * np.sin(th), r * np.cos(th), np.zeros(M),
lw=5,
linestyle='--',
color='black',
zorder=2)
ax.plot_surface(X2, Y2, Z2,
color='blue',
alpha=0.5,
linewidth=0,
zorder=3)
ax.plot(x[y > 0], y[y > 0], z[y > 0], lw=5,
linestyle='--',
color='green',
zorder=4)
ax.view_init(elev=20, azim=-20, roll=0)
ax.axis('off')
def test_format_coord():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
x = np.arange(10)
ax.plot(x, np.sin(x))
xv = 0.1
yv = 0.1
fig.canvas.draw()
assert ax.format_coord(xv, yv) == 'x=10.5227, y pane=1.0417, z=0.1444'
# Modify parameters
ax.view_init(roll=30, vertical_axis="y")
fig.canvas.draw()
assert ax.format_coord(xv, yv) == 'x pane=9.1875, y=0.9761, z=0.1291'
# Reset parameters
ax.view_init()
fig.canvas.draw()
assert ax.format_coord(xv, yv) == 'x=10.5227, y pane=1.0417, z=0.1444'
# Check orthographic projection
ax.set_proj_type('ortho')
fig.canvas.draw()
assert ax.format_coord(xv, yv) == 'x=10.8869, y pane=1.0417, z=0.1528'
# Check non-default perspective projection
ax.set_proj_type('persp', focal_length=0.1)
fig.canvas.draw()
assert ax.format_coord(xv, yv) == 'x=9.0620, y pane=1.0417, z=0.1110'
def test_get_axis_position():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
x = np.arange(10)
ax.plot(x, np.sin(x))
fig.canvas.draw()
assert ax.get_axis_position() == (False, True, False)
def test_margins():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.margins(0.2)
assert ax.margins() == (0.2, 0.2, 0.2)
ax.margins(0.1, 0.2, 0.3)
assert ax.margins() == (0.1, 0.2, 0.3)
ax.margins(x=0)
assert ax.margins() == (0, 0.2, 0.3)
ax.margins(y=0.1)
assert ax.margins() == (0, 0.1, 0.3)
ax.margins(z=0)
assert ax.margins() == (0, 0.1, 0)
@pytest.mark.parametrize('err, args, kwargs, match', (
(ValueError, (-1,), {}, r'margin must be greater than -0\.5'),
(ValueError, (1, -1, 1), {}, r'margin must be greater than -0\.5'),
(ValueError, (1, 1, -1), {}, r'margin must be greater than -0\.5'),
(ValueError, tuple(), {'x': -1}, r'margin must be greater than -0\.5'),
(ValueError, tuple(), {'y': -1}, r'margin must be greater than -0\.5'),
(ValueError, tuple(), {'z': -1}, r'margin must be greater than -0\.5'),
(TypeError, (1, ), {'x': 1},
'Cannot pass both positional and keyword'),
(TypeError, (1, ), {'x': 1, 'y': 1, 'z': 1},
'Cannot pass both positional and keyword'),
(TypeError, (1, ), {'x': 1, 'y': 1},
'Cannot pass both positional and keyword'),
(TypeError, (1, 1), {}, 'Must pass a single positional argument for'),
))
def test_margins_errors(err, args, kwargs, match):
with pytest.raises(err, match=match):
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.margins(*args, **kwargs)
@check_figures_equal(extensions=["png"])
def test_text_3d(fig_test, fig_ref):
ax = fig_ref.add_subplot(projection="3d")
txt = Text(0.5, 0.5, r'Foo bar $\int$')
art3d.text_2d_to_3d(txt, z=1)
ax.add_artist(txt)
assert txt.get_position_3d() == (0.5, 0.5, 1)
ax = fig_test.add_subplot(projection="3d")
t3d = art3d.Text3D(0.5, 0.5, 1, r'Foo bar $\int$')
ax.add_artist(t3d)
assert t3d.get_position_3d() == (0.5, 0.5, 1)
def test_draw_single_lines_from_Nx1():
# Smoke test for GH#23459
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.plot([[0], [1]], [[0], [1]], [[0], [1]])
@check_figures_equal(extensions=["png"])
def test_pathpatch_3d(fig_test, fig_ref):
ax = fig_ref.add_subplot(projection="3d")
path = Path.unit_rectangle()
patch = PathPatch(path)
art3d.pathpatch_2d_to_3d(patch, z=(0, 0.5, 0.7, 1, 0), zdir='y')
ax.add_artist(patch)
ax = fig_test.add_subplot(projection="3d")
pp3d = art3d.PathPatch3D(path, zs=(0, 0.5, 0.7, 1, 0), zdir='y')
ax.add_artist(pp3d)
@image_comparison(baseline_images=['scatter_spiral.png'],
remove_text=True,
style='mpl20')
def test_scatter_spiral():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
th = np.linspace(0, 2 * np.pi * 6, 256)
sc = ax.scatter(np.sin(th), np.cos(th), th, s=(1 + th * 5), c=th ** 2)
# force at least 1 draw!
fig.canvas.draw()
def test_Poly3DCollection_get_facecolor():
# Smoke test to see that get_facecolor does not raise
# See GH#4067
y, x = np.ogrid[1:10:100j, 1:10:100j]
z2 = np.cos(x) ** 3 - np.sin(y) ** 2
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
r = ax.plot_surface(x, y, z2, cmap='hot')
r.get_facecolor()
def test_Poly3DCollection_get_edgecolor():
# Smoke test to see that get_edgecolor does not raise
# See GH#4067
y, x = np.ogrid[1:10:100j, 1:10:100j]
z2 = np.cos(x) ** 3 - np.sin(y) ** 2
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
r = ax.plot_surface(x, y, z2, cmap='hot')
r.get_edgecolor()
@pytest.mark.parametrize(
"vertical_axis, proj_expected, axis_lines_expected, tickdirs_expected",
[
(
"z",
[
[0.0, 1.142857, 0.0, -0.571429],
[0.0, 0.0, 0.857143, -0.428571],
[0.0, 0.0, 0.0, -10.0],
[-1.142857, 0.0, 0.0, 10.571429],
],
[
([0.05617978, 0.06329114], [-0.04213483, -0.04746835]),
([-0.06329114, 0.06329114], [-0.04746835, -0.04746835]),
([-0.06329114, -0.06329114], [-0.04746835, 0.04746835]),
],
[1, 0, 0],
),
(
"y",
[
[1.142857, 0.0, 0.0, -0.571429],
[0.0, 0.857143, 0.0, -0.428571],
[0.0, 0.0, 0.0, -10.0],
[0.0, 0.0, -1.142857, 10.571429],
],
[
([-0.06329114, 0.06329114], [0.04746835, 0.04746835]),
([0.06329114, 0.06329114], [-0.04746835, 0.04746835]),
([-0.05617978, -0.06329114], [0.04213483, 0.04746835]),
],
[2, 2, 0],
),
(
"x",
[
[0.0, 0.0, 1.142857, -0.571429],
[0.857143, 0.0, 0.0, -0.428571],
[0.0, 0.0, 0.0, -10.0],
[0.0, -1.142857, 0.0, 10.571429],
],
[
([-0.06329114, -0.06329114], [0.04746835, -0.04746835]),
([0.06329114, 0.05617978], [0.04746835, 0.04213483]),
([0.06329114, -0.06329114], [0.04746835, 0.04746835]),
],
[1, 2, 1],
),
],
)
def test_view_init_vertical_axis(
vertical_axis, proj_expected, axis_lines_expected, tickdirs_expected
):
"""
Test the actual projection, axis lines and ticks matches expected values.
Parameters
----------
vertical_axis : str
Axis to align vertically.
proj_expected : ndarray
Expected values from ax.get_proj().
axis_lines_expected : tuple of arrays
Edgepoints of the axis line. Expected values retrieved according
to ``ax.get_[xyz]axis().line.get_data()``.
tickdirs_expected : list of int
indexes indicating which axis to create a tick line along.
"""
rtol = 2e-06
ax = plt.subplot(1, 1, 1, projection="3d")
ax.view_init(elev=0, azim=0, roll=0, vertical_axis=vertical_axis)
ax.figure.canvas.draw()
# Assert the projection matrix:
proj_actual = ax.get_proj()
np.testing.assert_allclose(proj_expected, proj_actual, rtol=rtol)
for i, axis in enumerate([ax.get_xaxis(), ax.get_yaxis(), ax.get_zaxis()]):
# Assert black lines are correctly aligned:
axis_line_expected = axis_lines_expected[i]
axis_line_actual = axis.line.get_data()
np.testing.assert_allclose(axis_line_expected, axis_line_actual,
rtol=rtol)
# Assert ticks are correctly aligned:
tickdir_expected = tickdirs_expected[i]
tickdir_actual = axis._get_tickdir('default')
np.testing.assert_array_equal(tickdir_expected, tickdir_actual)
@image_comparison(baseline_images=['arc_pathpatch.png'],
remove_text=True,
style='mpl20')
def test_arc_pathpatch():
ax = plt.subplot(1, 1, 1, projection="3d")
a = mpatch.Arc((0.5, 0.5), width=0.5, height=0.9,
angle=20, theta1=10, theta2=130)
ax.add_patch(a)
art3d.pathpatch_2d_to_3d(a, z=0, zdir='z')
@image_comparison(baseline_images=['panecolor_rcparams.png'],
remove_text=True,
style='mpl20')
def test_panecolor_rcparams():
with plt.rc_context({'axes3d.xaxis.panecolor': 'r',
'axes3d.yaxis.panecolor': 'g',
'axes3d.zaxis.panecolor': 'b'}):
fig = plt.figure(figsize=(1, 1))
fig.add_subplot(projection='3d')
@check_figures_equal(extensions=["png"])
def test_mutating_input_arrays_y_and_z(fig_test, fig_ref):
"""
Test to see if the `z` axis does not get mutated
after a call to `Axes3D.plot`
test cases came from GH#8990
"""
ax1 = fig_test.add_subplot(111, projection='3d')
x = [1, 2, 3]
y = [0.0, 0.0, 0.0]
z = [0.0, 0.0, 0.0]
ax1.plot(x, y, z, 'o-')
# mutate y,z to get a nontrivial line
y[:] = [1, 2, 3]
z[:] = [1, 2, 3]
# draw the same plot without mutating x and y
ax2 = fig_ref.add_subplot(111, projection='3d')
x = [1, 2, 3]
y = [0.0, 0.0, 0.0]
z = [0.0, 0.0, 0.0]
ax2.plot(x, y, z, 'o-')
def test_scatter_masked_color():
"""
Test color parameter usage with non-finite coordinate arrays.
GH#26236
"""
x = [np.nan, 1, 2, 1]
y = [0, np.inf, 2, 1]
z = [0, 1, -np.inf, 1]
colors = [
[0.0, 0.0, 0.0, 1],
[0.0, 0.0, 0.0, 1],
[0.0, 0.0, 0.0, 1],
[0.0, 0.0, 0.0, 1]
]
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
path3d = ax.scatter(x, y, z, color=colors)
# Assert sizes' equality
assert len(path3d.get_offsets()) ==\
len(super(type(path3d), path3d).get_facecolors())
@mpl3d_image_comparison(['surface3d_zsort_inf.png'], style='mpl20')
def test_surface3d_zsort_inf():
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
x, y = np.mgrid[-2:2:0.1, -2:2:0.1]
z = np.sin(x)**2 + np.cos(y)**2
z[x.shape[0] // 2:, x.shape[1] // 2:] = np.inf
ax.plot_surface(x, y, z, cmap='jet')
ax.view_init(elev=45, azim=145)
def test_Poly3DCollection_init_value_error():
# smoke test to ensure the input check works
# GH#26420
with pytest.raises(ValueError,
match='You must provide facecolors, edgecolors, '
'or both for shade to work.'):
poly = np.array([[0, 0, 1], [0, 1, 1], [0, 0, 0]], float)
c = art3d.Poly3DCollection([poly], shade=True)
def test_ndarray_color_kwargs_value_error():
# smoke test
# ensures ndarray can be passed to color in kwargs for 3d projection plot
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(1, 0, 0, color=np.array([0, 0, 0, 1]))
fig.canvas.draw()