477 lines
14 KiB
Python
477 lines
14 KiB
Python
|
"""
|
|||
|
Algorithms for chordal graphs.
|
|||
|
|
|||
|
A graph is chordal if every cycle of length at least 4 has a chord
|
|||
|
(an edge joining two nodes not adjacent in the cycle).
|
|||
|
https://en.wikipedia.org/wiki/Chordal_graph
|
|||
|
"""
|
|||
|
import sys
|
|||
|
import warnings
|
|||
|
|
|||
|
import networkx as nx
|
|||
|
from networkx.algorithms.components import connected_components
|
|||
|
from networkx.utils import arbitrary_element, not_implemented_for
|
|||
|
|
|||
|
__all__ = [
|
|||
|
"is_chordal",
|
|||
|
"find_induced_nodes",
|
|||
|
"chordal_graph_cliques",
|
|||
|
"chordal_graph_treewidth",
|
|||
|
"NetworkXTreewidthBoundExceeded",
|
|||
|
"complete_to_chordal_graph",
|
|||
|
]
|
|||
|
|
|||
|
|
|||
|
class NetworkXTreewidthBoundExceeded(nx.NetworkXException):
|
|||
|
"""Exception raised when a treewidth bound has been provided and it has
|
|||
|
been exceeded"""
|
|||
|
|
|||
|
|
|||
|
@not_implemented_for("directed")
|
|||
|
@not_implemented_for("multigraph")
|
|||
|
def is_chordal(G):
|
|||
|
"""Checks whether G is a chordal graph.
|
|||
|
|
|||
|
A graph is chordal if every cycle of length at least 4 has a chord
|
|||
|
(an edge joining two nodes not adjacent in the cycle).
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
G : graph
|
|||
|
A NetworkX graph.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
chordal : bool
|
|||
|
True if G is a chordal graph and False otherwise.
|
|||
|
|
|||
|
Raises
|
|||
|
------
|
|||
|
NetworkXNotImplemented
|
|||
|
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
>>> e = [
|
|||
|
... (1, 2),
|
|||
|
... (1, 3),
|
|||
|
... (2, 3),
|
|||
|
... (2, 4),
|
|||
|
... (3, 4),
|
|||
|
... (3, 5),
|
|||
|
... (3, 6),
|
|||
|
... (4, 5),
|
|||
|
... (4, 6),
|
|||
|
... (5, 6),
|
|||
|
... ]
|
|||
|
>>> G = nx.Graph(e)
|
|||
|
>>> nx.is_chordal(G)
|
|||
|
True
|
|||
|
|
|||
|
Notes
|
|||
|
-----
|
|||
|
The routine tries to go through every node following maximum cardinality
|
|||
|
search. It returns False when it finds that the separator for any node
|
|||
|
is not a clique. Based on the algorithms in [1]_.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms
|
|||
|
to test chordality of graphs, test acyclicity of hypergraphs, and
|
|||
|
selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984),
|
|||
|
pp. 566–579.
|
|||
|
"""
|
|||
|
return len(_find_chordality_breaker(G)) == 0
|
|||
|
|
|||
|
|
|||
|
def find_induced_nodes(G, s, t, treewidth_bound=sys.maxsize):
|
|||
|
"""Returns the set of induced nodes in the path from s to t.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
G : graph
|
|||
|
A chordal NetworkX graph
|
|||
|
s : node
|
|||
|
Source node to look for induced nodes
|
|||
|
t : node
|
|||
|
Destination node to look for induced nodes
|
|||
|
treewidth_bound: float
|
|||
|
Maximum treewidth acceptable for the graph H. The search
|
|||
|
for induced nodes will end as soon as the treewidth_bound is exceeded.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
induced_nodes : Set of nodes
|
|||
|
The set of induced nodes in the path from s to t in G
|
|||
|
|
|||
|
Raises
|
|||
|
------
|
|||
|
NetworkXError
|
|||
|
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
|
|||
|
If the input graph is an instance of one of these classes, a
|
|||
|
:exc:`NetworkXError` is raised.
|
|||
|
The algorithm can only be applied to chordal graphs. If the input
|
|||
|
graph is found to be non-chordal, a :exc:`NetworkXError` is raised.
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
>>> G = nx.Graph()
|
|||
|
>>> G = nx.generators.classic.path_graph(10)
|
|||
|
>>> induced_nodes = nx.find_induced_nodes(G, 1, 9, 2)
|
|||
|
>>> sorted(induced_nodes)
|
|||
|
[1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|||
|
|
|||
|
Notes
|
|||
|
-----
|
|||
|
G must be a chordal graph and (s,t) an edge that is not in G.
|
|||
|
|
|||
|
If a treewidth_bound is provided, the search for induced nodes will end
|
|||
|
as soon as the treewidth_bound is exceeded.
|
|||
|
|
|||
|
The algorithm is inspired by Algorithm 4 in [1]_.
|
|||
|
A formal definition of induced node can also be found on that reference.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] Learning Bounded Treewidth Bayesian Networks.
|
|||
|
Gal Elidan, Stephen Gould; JMLR, 9(Dec):2699--2731, 2008.
|
|||
|
http://jmlr.csail.mit.edu/papers/volume9/elidan08a/elidan08a.pdf
|
|||
|
"""
|
|||
|
if not is_chordal(G):
|
|||
|
raise nx.NetworkXError("Input graph is not chordal.")
|
|||
|
|
|||
|
H = nx.Graph(G)
|
|||
|
H.add_edge(s, t)
|
|||
|
induced_nodes = set()
|
|||
|
triplet = _find_chordality_breaker(H, s, treewidth_bound)
|
|||
|
while triplet:
|
|||
|
(u, v, w) = triplet
|
|||
|
induced_nodes.update(triplet)
|
|||
|
for n in triplet:
|
|||
|
if n != s:
|
|||
|
H.add_edge(s, n)
|
|||
|
triplet = _find_chordality_breaker(H, s, treewidth_bound)
|
|||
|
if induced_nodes:
|
|||
|
# Add t and the second node in the induced path from s to t.
|
|||
|
induced_nodes.add(t)
|
|||
|
for u in G[s]:
|
|||
|
if len(induced_nodes & set(G[u])) == 2:
|
|||
|
induced_nodes.add(u)
|
|||
|
break
|
|||
|
return induced_nodes
|
|||
|
|
|||
|
|
|||
|
def chordal_graph_cliques(G):
|
|||
|
"""Returns the set of maximal cliques of a chordal graph.
|
|||
|
|
|||
|
The algorithm breaks the graph in connected components and performs a
|
|||
|
maximum cardinality search in each component to get the cliques.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
G : graph
|
|||
|
A NetworkX graph
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
cliques : A set containing the maximal cliques in G.
|
|||
|
|
|||
|
Raises
|
|||
|
------
|
|||
|
NetworkXError
|
|||
|
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
|
|||
|
The algorithm can only be applied to chordal graphs. If the input
|
|||
|
graph is found to be non-chordal, a :exc:`NetworkXError` is raised.
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
>>> e = [
|
|||
|
... (1, 2),
|
|||
|
... (1, 3),
|
|||
|
... (2, 3),
|
|||
|
... (2, 4),
|
|||
|
... (3, 4),
|
|||
|
... (3, 5),
|
|||
|
... (3, 6),
|
|||
|
... (4, 5),
|
|||
|
... (4, 6),
|
|||
|
... (5, 6),
|
|||
|
... (7, 8),
|
|||
|
... ]
|
|||
|
>>> G = nx.Graph(e)
|
|||
|
>>> G.add_node(9)
|
|||
|
>>> setlist = nx.chordal_graph_cliques(G)
|
|||
|
"""
|
|||
|
msg = "This will return a generator in 3.0."
|
|||
|
warnings.warn(msg, DeprecationWarning)
|
|||
|
return {c for c in _chordal_graph_cliques(G)}
|
|||
|
|
|||
|
|
|||
|
def chordal_graph_treewidth(G):
|
|||
|
"""Returns the treewidth of the chordal graph G.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
G : graph
|
|||
|
A NetworkX graph
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
treewidth : int
|
|||
|
The size of the largest clique in the graph minus one.
|
|||
|
|
|||
|
Raises
|
|||
|
------
|
|||
|
NetworkXError
|
|||
|
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
|
|||
|
The algorithm can only be applied to chordal graphs. If the input
|
|||
|
graph is found to be non-chordal, a :exc:`NetworkXError` is raised.
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
>>> e = [
|
|||
|
... (1, 2),
|
|||
|
... (1, 3),
|
|||
|
... (2, 3),
|
|||
|
... (2, 4),
|
|||
|
... (3, 4),
|
|||
|
... (3, 5),
|
|||
|
... (3, 6),
|
|||
|
... (4, 5),
|
|||
|
... (4, 6),
|
|||
|
... (5, 6),
|
|||
|
... (7, 8),
|
|||
|
... ]
|
|||
|
>>> G = nx.Graph(e)
|
|||
|
>>> G.add_node(9)
|
|||
|
>>> nx.chordal_graph_treewidth(G)
|
|||
|
3
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Tree_decomposition#Treewidth
|
|||
|
"""
|
|||
|
if not is_chordal(G):
|
|||
|
raise nx.NetworkXError("Input graph is not chordal.")
|
|||
|
|
|||
|
max_clique = -1
|
|||
|
for clique in nx.chordal_graph_cliques(G):
|
|||
|
max_clique = max(max_clique, len(clique))
|
|||
|
return max_clique - 1
|
|||
|
|
|||
|
|
|||
|
def _is_complete_graph(G):
|
|||
|
"""Returns True if G is a complete graph."""
|
|||
|
if nx.number_of_selfloops(G) > 0:
|
|||
|
raise nx.NetworkXError("Self loop found in _is_complete_graph()")
|
|||
|
n = G.number_of_nodes()
|
|||
|
if n < 2:
|
|||
|
return True
|
|||
|
e = G.number_of_edges()
|
|||
|
max_edges = (n * (n - 1)) / 2
|
|||
|
return e == max_edges
|
|||
|
|
|||
|
|
|||
|
def _find_missing_edge(G):
|
|||
|
"""Given a non-complete graph G, returns a missing edge."""
|
|||
|
nodes = set(G)
|
|||
|
for u in G:
|
|||
|
missing = nodes - set(list(G[u].keys()) + [u])
|
|||
|
if missing:
|
|||
|
return (u, missing.pop())
|
|||
|
|
|||
|
|
|||
|
def _max_cardinality_node(G, choices, wanna_connect):
|
|||
|
"""Returns a the node in choices that has more connections in G
|
|||
|
to nodes in wanna_connect.
|
|||
|
"""
|
|||
|
max_number = -1
|
|||
|
for x in choices:
|
|||
|
number = len([y for y in G[x] if y in wanna_connect])
|
|||
|
if number > max_number:
|
|||
|
max_number = number
|
|||
|
max_cardinality_node = x
|
|||
|
return max_cardinality_node
|
|||
|
|
|||
|
|
|||
|
def _find_chordality_breaker(G, s=None, treewidth_bound=sys.maxsize):
|
|||
|
"""Given a graph G, starts a max cardinality search
|
|||
|
(starting from s if s is given and from an arbitrary node otherwise)
|
|||
|
trying to find a non-chordal cycle.
|
|||
|
|
|||
|
If it does find one, it returns (u,v,w) where u,v,w are the three
|
|||
|
nodes that together with s are involved in the cycle.
|
|||
|
"""
|
|||
|
if nx.number_of_selfloops(G) > 0:
|
|||
|
raise nx.NetworkXError("Input graph is not chordal.")
|
|||
|
unnumbered = set(G)
|
|||
|
if s is None:
|
|||
|
s = arbitrary_element(G)
|
|||
|
unnumbered.remove(s)
|
|||
|
numbered = {s}
|
|||
|
current_treewidth = -1
|
|||
|
while unnumbered: # and current_treewidth <= treewidth_bound:
|
|||
|
v = _max_cardinality_node(G, unnumbered, numbered)
|
|||
|
unnumbered.remove(v)
|
|||
|
numbered.add(v)
|
|||
|
clique_wanna_be = set(G[v]) & numbered
|
|||
|
sg = G.subgraph(clique_wanna_be)
|
|||
|
if _is_complete_graph(sg):
|
|||
|
# The graph seems to be chordal by now. We update the treewidth
|
|||
|
current_treewidth = max(current_treewidth, len(clique_wanna_be))
|
|||
|
if current_treewidth > treewidth_bound:
|
|||
|
raise nx.NetworkXTreewidthBoundExceeded(
|
|||
|
f"treewidth_bound exceeded: {current_treewidth}"
|
|||
|
)
|
|||
|
else:
|
|||
|
# sg is not a clique,
|
|||
|
# look for an edge that is not included in sg
|
|||
|
(u, w) = _find_missing_edge(sg)
|
|||
|
return (u, v, w)
|
|||
|
return ()
|
|||
|
|
|||
|
|
|||
|
def _chordal_graph_cliques(G):
|
|||
|
"""Returns all maximal cliques of a chordal graph.
|
|||
|
|
|||
|
The algorithm breaks the graph in connected components and performs a
|
|||
|
maximum cardinality search in each component to get the cliques.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
G : graph
|
|||
|
A NetworkX graph
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
iterator
|
|||
|
An iterator over maximal cliques, each of which is a frozenset of
|
|||
|
nodes in `G`. The order of cliques is arbitrary.
|
|||
|
|
|||
|
Raises
|
|||
|
------
|
|||
|
NetworkXError
|
|||
|
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
|
|||
|
The algorithm can only be applied to chordal graphs. If the input
|
|||
|
graph is found to be non-chordal, a :exc:`NetworkXError` is raised.
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
>>> e = [
|
|||
|
... (1, 2),
|
|||
|
... (1, 3),
|
|||
|
... (2, 3),
|
|||
|
... (2, 4),
|
|||
|
... (3, 4),
|
|||
|
... (3, 5),
|
|||
|
... (3, 6),
|
|||
|
... (4, 5),
|
|||
|
... (4, 6),
|
|||
|
... (5, 6),
|
|||
|
... (7, 8),
|
|||
|
... ]
|
|||
|
>>> G = nx.Graph(e)
|
|||
|
>>> G.add_node(9)
|
|||
|
>>> cliques = [c for c in _chordal_graph_cliques(G)]
|
|||
|
>>> cliques[0]
|
|||
|
frozenset({1, 2, 3})
|
|||
|
"""
|
|||
|
for C in (G.subgraph(c).copy() for c in connected_components(G)):
|
|||
|
if C.number_of_nodes() == 1:
|
|||
|
if nx.number_of_selfloops(C) > 0:
|
|||
|
raise nx.NetworkXError("Input graph is not chordal.")
|
|||
|
yield frozenset(C.nodes())
|
|||
|
else:
|
|||
|
unnumbered = set(C.nodes())
|
|||
|
v = arbitrary_element(C)
|
|||
|
unnumbered.remove(v)
|
|||
|
numbered = {v}
|
|||
|
clique_wanna_be = {v}
|
|||
|
while unnumbered:
|
|||
|
v = _max_cardinality_node(C, unnumbered, numbered)
|
|||
|
unnumbered.remove(v)
|
|||
|
numbered.add(v)
|
|||
|
new_clique_wanna_be = set(C.neighbors(v)) & numbered
|
|||
|
sg = C.subgraph(clique_wanna_be)
|
|||
|
if _is_complete_graph(sg):
|
|||
|
new_clique_wanna_be.add(v)
|
|||
|
if not new_clique_wanna_be >= clique_wanna_be:
|
|||
|
yield frozenset(clique_wanna_be)
|
|||
|
clique_wanna_be = new_clique_wanna_be
|
|||
|
else:
|
|||
|
raise nx.NetworkXError("Input graph is not chordal.")
|
|||
|
yield frozenset(clique_wanna_be)
|
|||
|
|
|||
|
|
|||
|
@not_implemented_for("directed")
|
|||
|
def complete_to_chordal_graph(G):
|
|||
|
"""Return a copy of G completed to a chordal graph
|
|||
|
|
|||
|
Adds edges to a copy of G to create a chordal graph. A graph G=(V,E) is
|
|||
|
called chordal if for each cycle with length bigger than 3, there exist
|
|||
|
two non-adjacent nodes connected by an edge (called a chord).
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
G : NetworkX graph
|
|||
|
Undirected graph
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
H : NetworkX graph
|
|||
|
The chordal enhancement of G
|
|||
|
alpha : Dictionary
|
|||
|
The elimination ordering of nodes of G
|
|||
|
|
|||
|
Notes
|
|||
|
-----
|
|||
|
There are different approaches to calculate the chordal
|
|||
|
enhancement of a graph. The algorithm used here is called
|
|||
|
MCS-M and gives at least minimal (local) triangulation of graph. Note
|
|||
|
that this triangulation is not necessarily a global minimum.
|
|||
|
|
|||
|
https://en.wikipedia.org/wiki/Chordal_graph
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] Berry, Anne & Blair, Jean & Heggernes, Pinar & Peyton, Barry. (2004)
|
|||
|
Maximum Cardinality Search for Computing Minimal Triangulations of
|
|||
|
Graphs. Algorithmica. 39. 287-298. 10.1007/s00453-004-1084-3.
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
>>> from networkx.algorithms.chordal import complete_to_chordal_graph
|
|||
|
>>> G = nx.wheel_graph(10)
|
|||
|
>>> H, alpha = complete_to_chordal_graph(G)
|
|||
|
"""
|
|||
|
H = G.copy()
|
|||
|
alpha = {node: 0 for node in H}
|
|||
|
if nx.is_chordal(H):
|
|||
|
return H, alpha
|
|||
|
chords = set()
|
|||
|
weight = {node: 0 for node in H.nodes()}
|
|||
|
unnumbered_nodes = list(H.nodes())
|
|||
|
for i in range(len(H.nodes()), 0, -1):
|
|||
|
# get the node in unnumbered_nodes with the maximum weight
|
|||
|
z = max(unnumbered_nodes, key=lambda node: weight[node])
|
|||
|
unnumbered_nodes.remove(z)
|
|||
|
alpha[z] = i
|
|||
|
update_nodes = []
|
|||
|
for y in unnumbered_nodes:
|
|||
|
if G.has_edge(y, z):
|
|||
|
update_nodes.append(y)
|
|||
|
else:
|
|||
|
# y_weight will be bigger than node weights between y and z
|
|||
|
y_weight = weight[y]
|
|||
|
lower_nodes = [
|
|||
|
node for node in unnumbered_nodes if weight[node] < y_weight
|
|||
|
]
|
|||
|
if nx.has_path(H.subgraph(lower_nodes + [z, y]), y, z):
|
|||
|
update_nodes.append(y)
|
|||
|
chords.add((z, y))
|
|||
|
# during calculation of paths the weights should not be updated
|
|||
|
for node in update_nodes:
|
|||
|
weight[node] += 1
|
|||
|
H.add_edges_from(chords)
|
|||
|
return H, alpha
|