157 lines
5.6 KiB
Python
157 lines
5.6 KiB
Python
|
# Natural Language Toolkit: Language Model Unit Tests
|
||
|
#
|
||
|
# Copyright (C) 2001-2023 NLTK Project
|
||
|
# Author: Ilia Kurenkov <ilia.kurenkov@gmail.com>
|
||
|
# URL: <https://www.nltk.org/>
|
||
|
# For license information, see LICENSE.TXT
|
||
|
|
||
|
import unittest
|
||
|
from collections import Counter
|
||
|
from timeit import timeit
|
||
|
|
||
|
from nltk.lm import Vocabulary
|
||
|
|
||
|
|
||
|
class NgramModelVocabularyTests(unittest.TestCase):
|
||
|
"""tests Vocabulary Class"""
|
||
|
|
||
|
@classmethod
|
||
|
def setUpClass(cls):
|
||
|
cls.vocab = Vocabulary(
|
||
|
["z", "a", "b", "c", "f", "d", "e", "g", "a", "d", "b", "e", "w"],
|
||
|
unk_cutoff=2,
|
||
|
)
|
||
|
|
||
|
def test_truthiness(self):
|
||
|
self.assertTrue(self.vocab)
|
||
|
|
||
|
def test_cutoff_value_set_correctly(self):
|
||
|
self.assertEqual(self.vocab.cutoff, 2)
|
||
|
|
||
|
def test_unable_to_change_cutoff(self):
|
||
|
with self.assertRaises(AttributeError):
|
||
|
self.vocab.cutoff = 3
|
||
|
|
||
|
def test_cutoff_setter_checks_value(self):
|
||
|
with self.assertRaises(ValueError) as exc_info:
|
||
|
Vocabulary("abc", unk_cutoff=0)
|
||
|
expected_error_msg = "Cutoff value cannot be less than 1. Got: 0"
|
||
|
self.assertEqual(expected_error_msg, str(exc_info.exception))
|
||
|
|
||
|
def test_counts_set_correctly(self):
|
||
|
self.assertEqual(self.vocab.counts["a"], 2)
|
||
|
self.assertEqual(self.vocab.counts["b"], 2)
|
||
|
self.assertEqual(self.vocab.counts["c"], 1)
|
||
|
|
||
|
def test_membership_check_respects_cutoff(self):
|
||
|
# a was seen 2 times, so it should be considered part of the vocabulary
|
||
|
self.assertTrue("a" in self.vocab)
|
||
|
# "c" was seen once, it shouldn't be considered part of the vocab
|
||
|
self.assertFalse("c" in self.vocab)
|
||
|
# "z" was never seen at all, also shouldn't be considered in the vocab
|
||
|
self.assertFalse("z" in self.vocab)
|
||
|
|
||
|
def test_vocab_len_respects_cutoff(self):
|
||
|
# Vocab size is the number of unique tokens that occur at least as often
|
||
|
# as the cutoff value, plus 1 to account for unknown words.
|
||
|
self.assertEqual(5, len(self.vocab))
|
||
|
|
||
|
def test_vocab_iter_respects_cutoff(self):
|
||
|
vocab_counts = ["a", "b", "c", "d", "e", "f", "g", "w", "z"]
|
||
|
vocab_items = ["a", "b", "d", "e", "<UNK>"]
|
||
|
|
||
|
self.assertCountEqual(vocab_counts, list(self.vocab.counts.keys()))
|
||
|
self.assertCountEqual(vocab_items, list(self.vocab))
|
||
|
|
||
|
def test_update_empty_vocab(self):
|
||
|
empty = Vocabulary(unk_cutoff=2)
|
||
|
self.assertEqual(len(empty), 0)
|
||
|
self.assertFalse(empty)
|
||
|
self.assertIn(empty.unk_label, empty)
|
||
|
|
||
|
empty.update(list("abcde"))
|
||
|
self.assertIn(empty.unk_label, empty)
|
||
|
|
||
|
def test_lookup(self):
|
||
|
self.assertEqual(self.vocab.lookup("a"), "a")
|
||
|
self.assertEqual(self.vocab.lookup("c"), "<UNK>")
|
||
|
|
||
|
def test_lookup_iterables(self):
|
||
|
self.assertEqual(self.vocab.lookup(["a", "b"]), ("a", "b"))
|
||
|
self.assertEqual(self.vocab.lookup(("a", "b")), ("a", "b"))
|
||
|
self.assertEqual(self.vocab.lookup(("a", "c")), ("a", "<UNK>"))
|
||
|
self.assertEqual(
|
||
|
self.vocab.lookup(map(str, range(3))), ("<UNK>", "<UNK>", "<UNK>")
|
||
|
)
|
||
|
|
||
|
def test_lookup_empty_iterables(self):
|
||
|
self.assertEqual(self.vocab.lookup(()), ())
|
||
|
self.assertEqual(self.vocab.lookup([]), ())
|
||
|
self.assertEqual(self.vocab.lookup(iter([])), ())
|
||
|
self.assertEqual(self.vocab.lookup(n for n in range(0, 0)), ())
|
||
|
|
||
|
def test_lookup_recursive(self):
|
||
|
self.assertEqual(
|
||
|
self.vocab.lookup([["a", "b"], ["a", "c"]]), (("a", "b"), ("a", "<UNK>"))
|
||
|
)
|
||
|
self.assertEqual(self.vocab.lookup([["a", "b"], "c"]), (("a", "b"), "<UNK>"))
|
||
|
self.assertEqual(self.vocab.lookup([[[[["a", "b"]]]]]), ((((("a", "b"),),),),))
|
||
|
|
||
|
def test_lookup_None(self):
|
||
|
with self.assertRaises(TypeError):
|
||
|
self.vocab.lookup(None)
|
||
|
with self.assertRaises(TypeError):
|
||
|
list(self.vocab.lookup([None, None]))
|
||
|
|
||
|
def test_lookup_int(self):
|
||
|
with self.assertRaises(TypeError):
|
||
|
self.vocab.lookup(1)
|
||
|
with self.assertRaises(TypeError):
|
||
|
list(self.vocab.lookup([1, 2]))
|
||
|
|
||
|
def test_lookup_empty_str(self):
|
||
|
self.assertEqual(self.vocab.lookup(""), "<UNK>")
|
||
|
|
||
|
def test_eqality(self):
|
||
|
v1 = Vocabulary(["a", "b", "c"], unk_cutoff=1)
|
||
|
v2 = Vocabulary(["a", "b", "c"], unk_cutoff=1)
|
||
|
v3 = Vocabulary(["a", "b", "c"], unk_cutoff=1, unk_label="blah")
|
||
|
v4 = Vocabulary(["a", "b"], unk_cutoff=1)
|
||
|
|
||
|
self.assertEqual(v1, v2)
|
||
|
self.assertNotEqual(v1, v3)
|
||
|
self.assertNotEqual(v1, v4)
|
||
|
|
||
|
def test_str(self):
|
||
|
self.assertEqual(
|
||
|
str(self.vocab), "<Vocabulary with cutoff=2 unk_label='<UNK>' and 5 items>"
|
||
|
)
|
||
|
|
||
|
def test_creation_with_counter(self):
|
||
|
self.assertEqual(
|
||
|
self.vocab,
|
||
|
Vocabulary(
|
||
|
Counter(
|
||
|
["z", "a", "b", "c", "f", "d", "e", "g", "a", "d", "b", "e", "w"]
|
||
|
),
|
||
|
unk_cutoff=2,
|
||
|
),
|
||
|
)
|
||
|
|
||
|
@unittest.skip(
|
||
|
reason="Test is known to be flaky as it compares (runtime) performance."
|
||
|
)
|
||
|
def test_len_is_constant(self):
|
||
|
# Given an obviously small and an obviously large vocabulary.
|
||
|
small_vocab = Vocabulary("abcde")
|
||
|
from nltk.corpus.europarl_raw import english
|
||
|
|
||
|
large_vocab = Vocabulary(english.words())
|
||
|
|
||
|
# If we time calling `len` on them.
|
||
|
small_vocab_len_time = timeit("len(small_vocab)", globals=locals())
|
||
|
large_vocab_len_time = timeit("len(large_vocab)", globals=locals())
|
||
|
|
||
|
# The timing should be the same order of magnitude.
|
||
|
self.assertAlmostEqual(small_vocab_len_time, large_vocab_len_time, places=1)
|