234 lines
9.0 KiB
Python
234 lines
9.0 KiB
Python
|
# Natural Language Toolkit: NLTK's very own tokenizer.
|
||
|
#
|
||
|
# Copyright (C) 2001-2023 NLTK Project
|
||
|
# Author: Liling Tan
|
||
|
# Tom Aarsen <> (modifications)
|
||
|
# URL: <https://www.nltk.org>
|
||
|
# For license information, see LICENSE.TXT
|
||
|
|
||
|
|
||
|
import re
|
||
|
import warnings
|
||
|
from typing import Iterator, List, Tuple
|
||
|
|
||
|
from nltk.tokenize.api import TokenizerI
|
||
|
from nltk.tokenize.util import align_tokens
|
||
|
|
||
|
|
||
|
class MacIntyreContractions:
|
||
|
"""
|
||
|
List of contractions adapted from Robert MacIntyre's tokenizer.
|
||
|
"""
|
||
|
|
||
|
CONTRACTIONS2 = [
|
||
|
r"(?i)\b(can)(?#X)(not)\b",
|
||
|
r"(?i)\b(d)(?#X)('ye)\b",
|
||
|
r"(?i)\b(gim)(?#X)(me)\b",
|
||
|
r"(?i)\b(gon)(?#X)(na)\b",
|
||
|
r"(?i)\b(got)(?#X)(ta)\b",
|
||
|
r"(?i)\b(lem)(?#X)(me)\b",
|
||
|
r"(?i)\b(more)(?#X)('n)\b",
|
||
|
r"(?i)\b(wan)(?#X)(na)(?=\s)",
|
||
|
]
|
||
|
CONTRACTIONS3 = [r"(?i) ('t)(?#X)(is)\b", r"(?i) ('t)(?#X)(was)\b"]
|
||
|
CONTRACTIONS4 = [r"(?i)\b(whad)(dd)(ya)\b", r"(?i)\b(wha)(t)(cha)\b"]
|
||
|
|
||
|
|
||
|
class NLTKWordTokenizer(TokenizerI):
|
||
|
"""
|
||
|
The NLTK tokenizer that has improved upon the TreebankWordTokenizer.
|
||
|
|
||
|
This is the method that is invoked by ``word_tokenize()``. It assumes that the
|
||
|
text has already been segmented into sentences, e.g. using ``sent_tokenize()``.
|
||
|
|
||
|
The tokenizer is "destructive" such that the regexes applied will munge the
|
||
|
input string to a state beyond re-construction. It is possible to apply
|
||
|
`TreebankWordDetokenizer.detokenize` to the tokenized outputs of
|
||
|
`NLTKDestructiveWordTokenizer.tokenize` but there's no guarantees to
|
||
|
revert to the original string.
|
||
|
"""
|
||
|
|
||
|
# Starting quotes.
|
||
|
STARTING_QUOTES = [
|
||
|
(re.compile("([«“‘„]|[`]+)", re.U), r" \1 "),
|
||
|
(re.compile(r"^\""), r"``"),
|
||
|
(re.compile(r"(``)"), r" \1 "),
|
||
|
(re.compile(r"([ \(\[{<])(\"|\'{2})"), r"\1 `` "),
|
||
|
(re.compile(r"(?i)(\')(?!re|ve|ll|m|t|s|d|n)(\w)\b", re.U), r"\1 \2"),
|
||
|
]
|
||
|
|
||
|
# Ending quotes.
|
||
|
ENDING_QUOTES = [
|
||
|
(re.compile("([»”’])", re.U), r" \1 "),
|
||
|
(re.compile(r"''"), " '' "),
|
||
|
(re.compile(r'"'), " '' "),
|
||
|
(re.compile(r"([^' ])('[sS]|'[mM]|'[dD]|') "), r"\1 \2 "),
|
||
|
(re.compile(r"([^' ])('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) "), r"\1 \2 "),
|
||
|
]
|
||
|
|
||
|
# For improvements for starting/closing quotes from TreebankWordTokenizer,
|
||
|
# see discussion on https://github.com/nltk/nltk/pull/1437
|
||
|
# Adding to TreebankWordTokenizer, nltk.word_tokenize now splits on
|
||
|
# - chervon quotes u'\xab' and u'\xbb' .
|
||
|
# - unicode quotes u'\u2018', u'\u2019', u'\u201c' and u'\u201d'
|
||
|
# See https://github.com/nltk/nltk/issues/1995#issuecomment-376741608
|
||
|
# Also, behavior of splitting on clitics now follows Stanford CoreNLP
|
||
|
# - clitics covered (?!re|ve|ll|m|t|s|d)(\w)\b
|
||
|
|
||
|
# Punctuation.
|
||
|
PUNCTUATION = [
|
||
|
(re.compile(r'([^\.])(\.)([\]\)}>"\'' "»”’ " r"]*)\s*$", re.U), r"\1 \2 \3 "),
|
||
|
(re.compile(r"([:,])([^\d])"), r" \1 \2"),
|
||
|
(re.compile(r"([:,])$"), r" \1 "),
|
||
|
(
|
||
|
re.compile(r"\.{2,}", re.U),
|
||
|
r" \g<0> ",
|
||
|
), # See https://github.com/nltk/nltk/pull/2322
|
||
|
(re.compile(r"[;@#$%&]"), r" \g<0> "),
|
||
|
(
|
||
|
re.compile(r'([^\.])(\.)([\]\)}>"\']*)\s*$'),
|
||
|
r"\1 \2\3 ",
|
||
|
), # Handles the final period.
|
||
|
(re.compile(r"[?!]"), r" \g<0> "),
|
||
|
(re.compile(r"([^'])' "), r"\1 ' "),
|
||
|
(
|
||
|
re.compile(r"[*]", re.U),
|
||
|
r" \g<0> ",
|
||
|
), # See https://github.com/nltk/nltk/pull/2322
|
||
|
]
|
||
|
|
||
|
# Pads parentheses
|
||
|
PARENS_BRACKETS = (re.compile(r"[\]\[\(\)\{\}\<\>]"), r" \g<0> ")
|
||
|
|
||
|
# Optionally: Convert parentheses, brackets and converts them to PTB symbols.
|
||
|
CONVERT_PARENTHESES = [
|
||
|
(re.compile(r"\("), "-LRB-"),
|
||
|
(re.compile(r"\)"), "-RRB-"),
|
||
|
(re.compile(r"\["), "-LSB-"),
|
||
|
(re.compile(r"\]"), "-RSB-"),
|
||
|
(re.compile(r"\{"), "-LCB-"),
|
||
|
(re.compile(r"\}"), "-RCB-"),
|
||
|
]
|
||
|
|
||
|
DOUBLE_DASHES = (re.compile(r"--"), r" -- ")
|
||
|
|
||
|
# List of contractions adapted from Robert MacIntyre's tokenizer.
|
||
|
_contractions = MacIntyreContractions()
|
||
|
CONTRACTIONS2 = list(map(re.compile, _contractions.CONTRACTIONS2))
|
||
|
CONTRACTIONS3 = list(map(re.compile, _contractions.CONTRACTIONS3))
|
||
|
|
||
|
def tokenize(
|
||
|
self, text: str, convert_parentheses: bool = False, return_str: bool = False
|
||
|
) -> List[str]:
|
||
|
r"""Return a tokenized copy of `text`.
|
||
|
|
||
|
>>> from nltk.tokenize import NLTKWordTokenizer
|
||
|
>>> s = '''Good muffins cost $3.88 (roughly 3,36 euros)\nin New York. Please buy me\ntwo of them.\nThanks.'''
|
||
|
>>> NLTKWordTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE
|
||
|
['Good', 'muffins', 'cost', '$', '3.88', '(', 'roughly', '3,36',
|
||
|
'euros', ')', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
|
||
|
'of', 'them.', 'Thanks', '.']
|
||
|
>>> NLTKWordTokenizer().tokenize(s, convert_parentheses=True) # doctest: +NORMALIZE_WHITESPACE
|
||
|
['Good', 'muffins', 'cost', '$', '3.88', '-LRB-', 'roughly', '3,36',
|
||
|
'euros', '-RRB-', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
|
||
|
'of', 'them.', 'Thanks', '.']
|
||
|
|
||
|
|
||
|
:param text: A string with a sentence or sentences.
|
||
|
:type text: str
|
||
|
:param convert_parentheses: if True, replace parentheses to PTB symbols,
|
||
|
e.g. `(` to `-LRB-`. Defaults to False.
|
||
|
:type convert_parentheses: bool, optional
|
||
|
:param return_str: If True, return tokens as space-separated string,
|
||
|
defaults to False.
|
||
|
:type return_str: bool, optional
|
||
|
:return: List of tokens from `text`.
|
||
|
:rtype: List[str]
|
||
|
"""
|
||
|
if return_str:
|
||
|
warnings.warn(
|
||
|
"Parameter 'return_str' has been deprecated and should no "
|
||
|
"longer be used.",
|
||
|
category=DeprecationWarning,
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
|
||
|
for regexp, substitution in self.STARTING_QUOTES:
|
||
|
text = regexp.sub(substitution, text)
|
||
|
|
||
|
for regexp, substitution in self.PUNCTUATION:
|
||
|
text = regexp.sub(substitution, text)
|
||
|
|
||
|
# Handles parentheses.
|
||
|
regexp, substitution = self.PARENS_BRACKETS
|
||
|
text = regexp.sub(substitution, text)
|
||
|
# Optionally convert parentheses
|
||
|
if convert_parentheses:
|
||
|
for regexp, substitution in self.CONVERT_PARENTHESES:
|
||
|
text = regexp.sub(substitution, text)
|
||
|
|
||
|
# Handles double dash.
|
||
|
regexp, substitution = self.DOUBLE_DASHES
|
||
|
text = regexp.sub(substitution, text)
|
||
|
|
||
|
# add extra space to make things easier
|
||
|
text = " " + text + " "
|
||
|
|
||
|
for regexp, substitution in self.ENDING_QUOTES:
|
||
|
text = regexp.sub(substitution, text)
|
||
|
|
||
|
for regexp in self.CONTRACTIONS2:
|
||
|
text = regexp.sub(r" \1 \2 ", text)
|
||
|
for regexp in self.CONTRACTIONS3:
|
||
|
text = regexp.sub(r" \1 \2 ", text)
|
||
|
|
||
|
# We are not using CONTRACTIONS4 since
|
||
|
# they are also commented out in the SED scripts
|
||
|
# for regexp in self._contractions.CONTRACTIONS4:
|
||
|
# text = regexp.sub(r' \1 \2 \3 ', text)
|
||
|
|
||
|
return text.split()
|
||
|
|
||
|
def span_tokenize(self, text: str) -> Iterator[Tuple[int, int]]:
|
||
|
r"""
|
||
|
Returns the spans of the tokens in ``text``.
|
||
|
Uses the post-hoc nltk.tokens.align_tokens to return the offset spans.
|
||
|
|
||
|
>>> from nltk.tokenize import NLTKWordTokenizer
|
||
|
>>> s = '''Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks).'''
|
||
|
>>> expected = [(0, 4), (5, 12), (13, 17), (18, 19), (19, 23),
|
||
|
... (24, 26), (27, 30), (31, 32), (32, 36), (36, 37), (37, 38),
|
||
|
... (40, 46), (47, 48), (48, 51), (51, 52), (53, 55), (56, 59),
|
||
|
... (60, 62), (63, 68), (69, 70), (70, 76), (76, 77), (77, 78)]
|
||
|
>>> list(NLTKWordTokenizer().span_tokenize(s)) == expected
|
||
|
True
|
||
|
>>> expected = ['Good', 'muffins', 'cost', '$', '3.88', 'in',
|
||
|
... 'New', '(', 'York', ')', '.', 'Please', '(', 'buy', ')',
|
||
|
... 'me', 'two', 'of', 'them.', '(', 'Thanks', ')', '.']
|
||
|
>>> [s[start:end] for start, end in NLTKWordTokenizer().span_tokenize(s)] == expected
|
||
|
True
|
||
|
|
||
|
:param text: A string with a sentence or sentences.
|
||
|
:type text: str
|
||
|
:yield: Tuple[int, int]
|
||
|
"""
|
||
|
raw_tokens = self.tokenize(text)
|
||
|
|
||
|
# Convert converted quotes back to original double quotes
|
||
|
# Do this only if original text contains double quote(s) or double
|
||
|
# single-quotes (because '' might be transformed to `` if it is
|
||
|
# treated as starting quotes).
|
||
|
if ('"' in text) or ("''" in text):
|
||
|
# Find double quotes and converted quotes
|
||
|
matched = [m.group() for m in re.finditer(r"``|'{2}|\"", text)]
|
||
|
|
||
|
# Replace converted quotes back to double quotes
|
||
|
tokens = [
|
||
|
matched.pop(0) if tok in ['"', "``", "''"] else tok
|
||
|
for tok in raw_tokens
|
||
|
]
|
||
|
else:
|
||
|
tokens = raw_tokens
|
||
|
|
||
|
yield from align_tokens(tokens, text)
|