2224 lines
74 KiB
Python
2224 lines
74 KiB
Python
|
"""
|
||
|
Implement the random and np.random module functions.
|
||
|
"""
|
||
|
|
||
|
|
||
|
import math
|
||
|
import random
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from llvmlite import ir
|
||
|
|
||
|
from numba.core.cgutils import is_nonelike
|
||
|
from numba.core.extending import intrinsic, overload, register_jitable
|
||
|
from numba.core.imputils import (Registry, impl_ret_untracked,
|
||
|
impl_ret_new_ref)
|
||
|
from numba.core.typing import signature
|
||
|
from numba.core import types, cgutils
|
||
|
from numba.np import arrayobj
|
||
|
from numba.core.errors import NumbaTypeError
|
||
|
|
||
|
|
||
|
registry = Registry('randomimpl')
|
||
|
lower = registry.lower
|
||
|
|
||
|
int32_t = ir.IntType(32)
|
||
|
int64_t = ir.IntType(64)
|
||
|
def const_int(x):
|
||
|
return ir.Constant(int32_t, x)
|
||
|
double = ir.DoubleType()
|
||
|
|
||
|
N = 624
|
||
|
N_const = ir.Constant(int32_t, N)
|
||
|
|
||
|
|
||
|
# This is the same struct as rnd_state_t in _random.c.
|
||
|
rnd_state_t = ir.LiteralStructType([
|
||
|
# index
|
||
|
int32_t,
|
||
|
# mt[N]
|
||
|
ir.ArrayType(int32_t, N),
|
||
|
# has_gauss
|
||
|
int32_t,
|
||
|
# gauss
|
||
|
double,
|
||
|
# is_initialized
|
||
|
int32_t,
|
||
|
])
|
||
|
rnd_state_ptr_t = ir.PointerType(rnd_state_t)
|
||
|
|
||
|
|
||
|
def get_state_ptr(context, builder, name):
|
||
|
"""
|
||
|
Get a pointer to the given thread-local random state
|
||
|
(depending on *name*: "py" or "np").
|
||
|
If the state isn't initialized, it is lazily initialized with
|
||
|
system entropy.
|
||
|
"""
|
||
|
assert name in ('py', 'np', 'internal')
|
||
|
func_name = "numba_get_%s_random_state" % name
|
||
|
fnty = ir.FunctionType(rnd_state_ptr_t, ())
|
||
|
fn = cgutils.get_or_insert_function(builder.module, fnty, func_name)
|
||
|
# These two attributes allow LLVM to hoist the function call
|
||
|
# outside of loops.
|
||
|
fn.attributes.add('readnone')
|
||
|
fn.attributes.add('nounwind')
|
||
|
return builder.call(fn, ())
|
||
|
|
||
|
def get_py_state_ptr(context, builder):
|
||
|
"""
|
||
|
Get a pointer to the thread-local Python random state.
|
||
|
"""
|
||
|
return get_state_ptr(context, builder, 'py')
|
||
|
|
||
|
def get_np_state_ptr(context, builder):
|
||
|
"""
|
||
|
Get a pointer to the thread-local Numpy random state.
|
||
|
"""
|
||
|
return get_state_ptr(context, builder, 'np')
|
||
|
|
||
|
def get_internal_state_ptr(context, builder):
|
||
|
"""
|
||
|
Get a pointer to the thread-local internal random state.
|
||
|
"""
|
||
|
return get_state_ptr(context, builder, 'internal')
|
||
|
|
||
|
# Accessors
|
||
|
def get_index_ptr(builder, state_ptr):
|
||
|
return cgutils.gep_inbounds(builder, state_ptr, 0, 0)
|
||
|
|
||
|
def get_array_ptr(builder, state_ptr):
|
||
|
return cgutils.gep_inbounds(builder, state_ptr, 0, 1)
|
||
|
|
||
|
def get_has_gauss_ptr(builder, state_ptr):
|
||
|
return cgutils.gep_inbounds(builder, state_ptr, 0, 2)
|
||
|
|
||
|
def get_gauss_ptr(builder, state_ptr):
|
||
|
return cgutils.gep_inbounds(builder, state_ptr, 0, 3)
|
||
|
|
||
|
def get_rnd_shuffle(builder):
|
||
|
"""
|
||
|
Get the internal function to shuffle the MT taste.
|
||
|
"""
|
||
|
fnty = ir.FunctionType(ir.VoidType(), (rnd_state_ptr_t,))
|
||
|
fn = cgutils.get_or_insert_function(builder.function.module, fnty,
|
||
|
"numba_rnd_shuffle")
|
||
|
fn.args[0].add_attribute("nocapture")
|
||
|
return fn
|
||
|
|
||
|
|
||
|
def get_next_int32(context, builder, state_ptr):
|
||
|
"""
|
||
|
Get the next int32 generated by the PRNG at *state_ptr*.
|
||
|
"""
|
||
|
idxptr = get_index_ptr(builder, state_ptr)
|
||
|
idx = builder.load(idxptr)
|
||
|
need_reshuffle = builder.icmp_unsigned('>=', idx, N_const)
|
||
|
with cgutils.if_unlikely(builder, need_reshuffle):
|
||
|
fn = get_rnd_shuffle(builder)
|
||
|
builder.call(fn, (state_ptr,))
|
||
|
builder.store(const_int(0), idxptr)
|
||
|
idx = builder.load(idxptr)
|
||
|
array_ptr = get_array_ptr(builder, state_ptr)
|
||
|
y = builder.load(cgutils.gep_inbounds(builder, array_ptr, 0, idx))
|
||
|
idx = builder.add(idx, const_int(1))
|
||
|
builder.store(idx, idxptr)
|
||
|
# Tempering
|
||
|
y = builder.xor(y, builder.lshr(y, const_int(11)))
|
||
|
y = builder.xor(y, builder.and_(builder.shl(y, const_int(7)),
|
||
|
const_int(0x9d2c5680)))
|
||
|
y = builder.xor(y, builder.and_(builder.shl(y, const_int(15)),
|
||
|
const_int(0xefc60000)))
|
||
|
y = builder.xor(y, builder.lshr(y, const_int(18)))
|
||
|
return y
|
||
|
|
||
|
def get_next_double(context, builder, state_ptr):
|
||
|
"""
|
||
|
Get the next double generated by the PRNG at *state_ptr*.
|
||
|
"""
|
||
|
# a = rk_random(state) >> 5, b = rk_random(state) >> 6;
|
||
|
a = builder.lshr(get_next_int32(context, builder, state_ptr), const_int(5))
|
||
|
b = builder.lshr(get_next_int32(context, builder, state_ptr), const_int(6))
|
||
|
|
||
|
# return (a * 67108864.0 + b) / 9007199254740992.0;
|
||
|
a = builder.uitofp(a, double)
|
||
|
b = builder.uitofp(b, double)
|
||
|
return builder.fdiv(
|
||
|
builder.fadd(b, builder.fmul(a, ir.Constant(double, 67108864.0))),
|
||
|
ir.Constant(double, 9007199254740992.0))
|
||
|
|
||
|
def get_next_int(context, builder, state_ptr, nbits, is_numpy):
|
||
|
"""
|
||
|
Get the next integer with width *nbits*.
|
||
|
"""
|
||
|
c32 = ir.Constant(nbits.type, 32)
|
||
|
def get_shifted_int(nbits):
|
||
|
shift = builder.sub(c32, nbits)
|
||
|
y = get_next_int32(context, builder, state_ptr)
|
||
|
|
||
|
# This truncation/extension is safe because 0 < nbits <= 64
|
||
|
if nbits.type.width < y.type.width:
|
||
|
shift = builder.zext(shift, y.type)
|
||
|
elif nbits.type.width > y.type.width:
|
||
|
shift = builder.trunc(shift, y.type)
|
||
|
|
||
|
if is_numpy:
|
||
|
# Use the last N bits, to match np.random
|
||
|
mask = builder.not_(ir.Constant(y.type, 0))
|
||
|
mask = builder.lshr(mask, shift)
|
||
|
return builder.and_(y, mask)
|
||
|
else:
|
||
|
# Use the first N bits, to match CPython random
|
||
|
return builder.lshr(y, shift)
|
||
|
|
||
|
ret = cgutils.alloca_once_value(builder, ir.Constant(int64_t, 0))
|
||
|
|
||
|
is_32b = builder.icmp_unsigned('<=', nbits, c32)
|
||
|
with builder.if_else(is_32b) as (ifsmall, iflarge):
|
||
|
with ifsmall:
|
||
|
low = get_shifted_int(nbits)
|
||
|
builder.store(builder.zext(low, int64_t), ret)
|
||
|
with iflarge:
|
||
|
# XXX This assumes nbits <= 64
|
||
|
if is_numpy:
|
||
|
# Get the high bits first to match np.random
|
||
|
high = get_shifted_int(builder.sub(nbits, c32))
|
||
|
low = get_next_int32(context, builder, state_ptr)
|
||
|
if not is_numpy:
|
||
|
# Get the high bits second to match CPython random
|
||
|
high = get_shifted_int(builder.sub(nbits, c32))
|
||
|
total = builder.add(
|
||
|
builder.zext(low, int64_t),
|
||
|
builder.shl(builder.zext(high, int64_t),
|
||
|
ir.Constant(int64_t, 32)))
|
||
|
builder.store(total, ret)
|
||
|
|
||
|
return builder.load(ret)
|
||
|
|
||
|
|
||
|
@overload(random.seed)
|
||
|
def seed_impl(a):
|
||
|
if isinstance(a, types.Integer):
|
||
|
fn = register_jitable(_seed_impl('py'))
|
||
|
def impl(a):
|
||
|
return fn(a)
|
||
|
return impl
|
||
|
|
||
|
|
||
|
@overload(np.random.seed)
|
||
|
def seed_impl(seed):
|
||
|
if isinstance(seed, types.Integer):
|
||
|
return _seed_impl('np')
|
||
|
|
||
|
|
||
|
def _seed_impl(state_type):
|
||
|
@intrinsic
|
||
|
def _impl(typingcontext, seed):
|
||
|
def codegen(context, builder, sig, args):
|
||
|
seed_value, = args
|
||
|
fnty = ir.FunctionType(ir.VoidType(), (rnd_state_ptr_t, int32_t))
|
||
|
fn = cgutils.get_or_insert_function(builder.function.module, fnty,
|
||
|
'numba_rnd_init')
|
||
|
builder.call(fn, (get_state_ptr(context, builder, state_type),
|
||
|
seed_value))
|
||
|
return context.get_constant(types.none, None)
|
||
|
return signature(types.void, types.uint32), codegen
|
||
|
return lambda seed: _impl(seed)
|
||
|
|
||
|
|
||
|
@overload(random.random)
|
||
|
def random_impl():
|
||
|
@intrinsic
|
||
|
def _impl(typingcontext):
|
||
|
def codegen(context, builder, sig, args):
|
||
|
state_ptr = get_state_ptr(context, builder, "py")
|
||
|
return get_next_double(context, builder, state_ptr)
|
||
|
return signature(types.double), codegen
|
||
|
return lambda: _impl()
|
||
|
|
||
|
|
||
|
@overload(np.random.random)
|
||
|
@overload(np.random.random_sample)
|
||
|
@overload(np.random.sample)
|
||
|
@overload(np.random.ranf)
|
||
|
def random_impl0():
|
||
|
@intrinsic
|
||
|
def _impl(typingcontext):
|
||
|
def codegen(context, builder, sig, args):
|
||
|
state_ptr = get_state_ptr(context, builder, "np")
|
||
|
return get_next_double(context, builder, state_ptr)
|
||
|
return signature(types.float64), codegen
|
||
|
return lambda: _impl()
|
||
|
|
||
|
|
||
|
@overload(np.random.random)
|
||
|
@overload(np.random.random_sample)
|
||
|
@overload(np.random.sample)
|
||
|
@overload(np.random.ranf)
|
||
|
def random_impl1(size=None):
|
||
|
if is_nonelike(size):
|
||
|
return lambda size=None: np.random.random()
|
||
|
if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer)):
|
||
|
def _impl(size=None):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.random()
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(random.gauss)
|
||
|
@overload(random.normalvariate)
|
||
|
def gauss_impl(mu, sigma):
|
||
|
if isinstance(mu, (types.Float, types.Integer)) and isinstance(
|
||
|
sigma, (types.Float, types.Integer)):
|
||
|
@intrinsic
|
||
|
def _impl(typingcontext, mu, sigma):
|
||
|
loc_preprocessor = _double_preprocessor(mu)
|
||
|
scale_preprocessor = _double_preprocessor(sigma)
|
||
|
return signature(types.float64, mu, sigma),\
|
||
|
_gauss_impl("py", loc_preprocessor, scale_preprocessor)
|
||
|
return lambda mu, sigma: _impl(mu, sigma)
|
||
|
|
||
|
|
||
|
@overload(np.random.standard_normal)
|
||
|
@overload(np.random.normal)
|
||
|
def np_gauss_impl0():
|
||
|
return lambda: np.random.normal(0.0, 1.0)
|
||
|
|
||
|
|
||
|
@overload(np.random.normal)
|
||
|
def np_gauss_impl1(loc):
|
||
|
if isinstance(loc, (types.Float, types.Integer)):
|
||
|
return lambda loc: np.random.normal(loc, 1.0)
|
||
|
|
||
|
|
||
|
@overload(np.random.normal)
|
||
|
def np_gauss_impl2(loc, scale):
|
||
|
if isinstance(loc, (types.Float, types.Integer)) and isinstance(
|
||
|
scale, (types.Float, types.Integer)):
|
||
|
@intrinsic
|
||
|
def _impl(typingcontext, loc, scale):
|
||
|
loc_preprocessor = _double_preprocessor(loc)
|
||
|
scale_preprocessor = _double_preprocessor(scale)
|
||
|
return signature(types.float64, loc, scale),\
|
||
|
_gauss_impl("np", loc_preprocessor, scale_preprocessor)
|
||
|
return lambda loc, scale: _impl(loc, scale)
|
||
|
|
||
|
|
||
|
@overload(np.random.standard_normal)
|
||
|
def standard_normal_impl1(size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda size: np.random.standard_normal()
|
||
|
if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer)):
|
||
|
def _impl(size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.standard_normal()
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.normal)
|
||
|
def np_gauss_impl3(loc, scale, size):
|
||
|
if (isinstance(loc, (types.Float, types.Integer)) and isinstance(
|
||
|
scale, (types.Float, types.Integer)) and
|
||
|
is_nonelike(size)):
|
||
|
return lambda loc, scale, size: np.random.normal(loc, scale)
|
||
|
if (isinstance(loc, (types.Float, types.Integer)) and isinstance(
|
||
|
scale, (types.Float, types.Integer)) and
|
||
|
(isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer)))):
|
||
|
def _impl(loc, scale, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.normal(loc, scale)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
def _gauss_pair_impl(_random):
|
||
|
def compute_gauss_pair():
|
||
|
"""
|
||
|
Compute a pair of numbers on the normal distribution.
|
||
|
"""
|
||
|
while True:
|
||
|
x1 = 2.0 * _random() - 1.0
|
||
|
x2 = 2.0 * _random() - 1.0
|
||
|
r2 = x1*x1 + x2*x2
|
||
|
if r2 < 1.0 and r2 != 0.0:
|
||
|
break
|
||
|
|
||
|
# Box-Muller transform
|
||
|
f = math.sqrt(-2.0 * math.log(r2) / r2)
|
||
|
return f * x1, f * x2
|
||
|
return compute_gauss_pair
|
||
|
|
||
|
|
||
|
def _gauss_impl(state, loc_preprocessor, scale_preprocessor):
|
||
|
def _impl(context, builder, sig, args):
|
||
|
# The type for all computations (either float or double)
|
||
|
ty = sig.return_type
|
||
|
llty = context.get_data_type(ty)
|
||
|
_random = {"py": random.random,
|
||
|
"np": np.random.random}[state]
|
||
|
|
||
|
state_ptr = get_state_ptr(context, builder, state)
|
||
|
|
||
|
ret = cgutils.alloca_once(builder, llty, name="result")
|
||
|
|
||
|
gauss_ptr = get_gauss_ptr(builder, state_ptr)
|
||
|
has_gauss_ptr = get_has_gauss_ptr(builder, state_ptr)
|
||
|
has_gauss = cgutils.is_true(builder, builder.load(has_gauss_ptr))
|
||
|
with builder.if_else(has_gauss) as (then, otherwise):
|
||
|
with then:
|
||
|
# if has_gauss: return it
|
||
|
builder.store(builder.load(gauss_ptr), ret)
|
||
|
builder.store(const_int(0), has_gauss_ptr)
|
||
|
with otherwise:
|
||
|
# if not has_gauss: compute a pair of numbers using the Box-Muller
|
||
|
# transform; keep one and return the other
|
||
|
pair = context.compile_internal(builder,
|
||
|
_gauss_pair_impl(_random),
|
||
|
signature(types.UniTuple(ty, 2)),
|
||
|
())
|
||
|
|
||
|
first, second = cgutils.unpack_tuple(builder, pair, 2)
|
||
|
builder.store(first, gauss_ptr)
|
||
|
builder.store(second, ret)
|
||
|
builder.store(const_int(1), has_gauss_ptr)
|
||
|
|
||
|
mu, sigma = args
|
||
|
return builder.fadd(loc_preprocessor(builder, mu),
|
||
|
builder.fmul(scale_preprocessor(builder, sigma),
|
||
|
builder.load(ret)))
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
def _double_preprocessor(value):
|
||
|
ty = ir.types.DoubleType()
|
||
|
|
||
|
if isinstance(value, types.Integer):
|
||
|
if value.signed:
|
||
|
return lambda builder, v: builder.sitofp(v, ty)
|
||
|
else:
|
||
|
return lambda builder, v: builder.uitofp(v, ty)
|
||
|
elif isinstance(value, types.Float):
|
||
|
if value.bitwidth != 64:
|
||
|
return lambda builder, v: builder.fpext(v, ty)
|
||
|
else:
|
||
|
return lambda _builder, v: v
|
||
|
else:
|
||
|
raise TypeError("Cannot convert {} to floating point type" % value)
|
||
|
|
||
|
|
||
|
@overload(random.getrandbits)
|
||
|
def getrandbits_impl(k):
|
||
|
if isinstance(k, types.Integer):
|
||
|
@intrinsic
|
||
|
def _impl(typingcontext, k):
|
||
|
def codegen(context, builder, sig, args):
|
||
|
nbits, = args
|
||
|
|
||
|
too_large = builder.icmp_unsigned(">=", nbits, const_int(65))
|
||
|
too_small = builder.icmp_unsigned("==", nbits, const_int(0))
|
||
|
with cgutils.if_unlikely(builder, builder.or_(too_large,
|
||
|
too_small)):
|
||
|
msg = "getrandbits() limited to 64 bits"
|
||
|
context.call_conv.return_user_exc(builder, OverflowError,
|
||
|
(msg,))
|
||
|
state_ptr = get_state_ptr(context, builder, "py")
|
||
|
return get_next_int(context, builder, state_ptr, nbits, False)
|
||
|
return signature(types.uint64, k), codegen
|
||
|
return lambda k: _impl(k)
|
||
|
|
||
|
|
||
|
def _randrange_impl(context, builder, start, stop, step, ty, signed, state):
|
||
|
state_ptr = get_state_ptr(context, builder, state)
|
||
|
zero = ir.Constant(ty, 0)
|
||
|
one = ir.Constant(ty, 1)
|
||
|
nptr = cgutils.alloca_once(builder, ty, name="n")
|
||
|
|
||
|
# n = stop - start
|
||
|
builder.store(builder.sub(stop, start), nptr)
|
||
|
|
||
|
with builder.if_then(builder.icmp_signed('<', step, zero)):
|
||
|
# n = (n + step + 1) // step
|
||
|
w = builder.add(builder.add(builder.load(nptr), step), one)
|
||
|
n = builder.sdiv(w, step)
|
||
|
builder.store(n, nptr)
|
||
|
with builder.if_then(builder.icmp_signed('>', step, one)):
|
||
|
# n = (n + step - 1) // step
|
||
|
w = builder.sub(builder.add(builder.load(nptr), step), one)
|
||
|
n = builder.sdiv(w, step)
|
||
|
builder.store(n, nptr)
|
||
|
|
||
|
n = builder.load(nptr)
|
||
|
with cgutils.if_unlikely(builder, builder.icmp_signed('<=', n, zero)):
|
||
|
# n <= 0
|
||
|
msg = "empty range for randrange()"
|
||
|
context.call_conv.return_user_exc(builder, ValueError, (msg,))
|
||
|
|
||
|
fnty = ir.FunctionType(ty, [ty, cgutils.true_bit.type])
|
||
|
fn = cgutils.get_or_insert_function(builder.function.module, fnty,
|
||
|
"llvm.ctlz.%s" % ty)
|
||
|
# Since the upper bound is exclusive, we need to subtract one before
|
||
|
# calculating the number of bits. This leads to a special case when
|
||
|
# n == 1; there's only one possible result, so we don't need bits from
|
||
|
# the PRNG. This case is handled separately towards the end of this
|
||
|
# function. CPython's implementation is simpler and just runs another
|
||
|
# iteration of the while loop when the resulting number is too large
|
||
|
# instead of subtracting one, to avoid needing to handle a special
|
||
|
# case. Thus, we only perform this subtraction for the NumPy case.
|
||
|
nm1 = builder.sub(n, one) if state == "np" else n
|
||
|
nbits = builder.trunc(builder.call(fn, [nm1, cgutils.true_bit]), int32_t)
|
||
|
nbits = builder.sub(ir.Constant(int32_t, ty.width), nbits)
|
||
|
|
||
|
rptr = cgutils.alloca_once(builder, ty, name="r")
|
||
|
|
||
|
def get_num():
|
||
|
bbwhile = builder.append_basic_block("while")
|
||
|
bbend = builder.append_basic_block("while.end")
|
||
|
builder.branch(bbwhile)
|
||
|
|
||
|
builder.position_at_end(bbwhile)
|
||
|
r = get_next_int(context, builder, state_ptr, nbits, state == "np")
|
||
|
r = builder.trunc(r, ty)
|
||
|
too_large = builder.icmp_signed('>=', r, n)
|
||
|
builder.cbranch(too_large, bbwhile, bbend)
|
||
|
|
||
|
builder.position_at_end(bbend)
|
||
|
builder.store(r, rptr)
|
||
|
|
||
|
if state == "np":
|
||
|
# Handle n == 1 case, per previous comment.
|
||
|
with builder.if_else(builder.icmp_signed('==', n, one)) as (is_one, is_not_one):
|
||
|
with is_one:
|
||
|
builder.store(zero, rptr)
|
||
|
with is_not_one:
|
||
|
get_num()
|
||
|
else:
|
||
|
get_num()
|
||
|
|
||
|
return builder.add(start, builder.mul(builder.load(rptr), step))
|
||
|
|
||
|
|
||
|
@overload(random.randrange)
|
||
|
def randrange_impl_1(start):
|
||
|
if isinstance(start, types.Integer):
|
||
|
return lambda start: random.randrange(0, start, 1)
|
||
|
|
||
|
|
||
|
@overload(random.randrange)
|
||
|
def randrange_impl_2(start, stop):
|
||
|
if isinstance(start, types.Integer) and isinstance(stop, types.Integer):
|
||
|
return lambda start, stop: random.randrange(start, stop, 1)
|
||
|
|
||
|
|
||
|
def _randrange_preprocessor(bitwidth, ty):
|
||
|
if ty.bitwidth != bitwidth:
|
||
|
return (ir.IRBuilder.sext if ty.signed
|
||
|
else ir.IRBuilder.zext)
|
||
|
else:
|
||
|
return lambda _builder, v, _ty: v
|
||
|
|
||
|
|
||
|
@overload(random.randrange)
|
||
|
def randrange_impl_3(start, stop, step):
|
||
|
if (isinstance(start, types.Integer) and isinstance(stop, types.Integer) and
|
||
|
isinstance(step, types.Integer)):
|
||
|
signed = max(start.signed, stop.signed, step.signed)
|
||
|
bitwidth = max(start.bitwidth, stop.bitwidth, step.bitwidth)
|
||
|
int_ty = types.Integer.from_bitwidth(bitwidth, signed)
|
||
|
llvm_type = ir.IntType(bitwidth)
|
||
|
|
||
|
start_preprocessor = _randrange_preprocessor(bitwidth, start)
|
||
|
stop_preprocessor = _randrange_preprocessor(bitwidth, stop)
|
||
|
step_preprocessor = _randrange_preprocessor(bitwidth, step)
|
||
|
|
||
|
@intrinsic
|
||
|
def _impl(typingcontext, start, stop, step):
|
||
|
def codegen(context, builder, sig, args):
|
||
|
start, stop, step = args
|
||
|
|
||
|
start = start_preprocessor(builder, start, llvm_type)
|
||
|
stop = stop_preprocessor(builder, stop, llvm_type)
|
||
|
step = step_preprocessor(builder, step, llvm_type)
|
||
|
return _randrange_impl(context, builder, start, stop, step,
|
||
|
llvm_type, signed, 'py')
|
||
|
return signature(int_ty, start, stop, step), codegen
|
||
|
return lambda start, stop, step: _impl(start, stop, step)
|
||
|
|
||
|
|
||
|
@overload(random.randint)
|
||
|
def randint_impl_1(a, b):
|
||
|
if isinstance(a, types.Integer) and isinstance(b, types.Integer):
|
||
|
return lambda a, b: random.randrange(a, b + 1, 1)
|
||
|
|
||
|
|
||
|
@overload(np.random.randint)
|
||
|
def np_randint_impl_1(low):
|
||
|
if isinstance(low, types.Integer):
|
||
|
return lambda low: np.random.randint(0, low)
|
||
|
|
||
|
|
||
|
@overload(np.random.randint)
|
||
|
def np_randint_impl_2(low, high):
|
||
|
if isinstance(low, types.Integer) and isinstance(high, types.Integer):
|
||
|
signed = max(low.signed, high.signed)
|
||
|
bitwidth = max(low.bitwidth, high.bitwidth)
|
||
|
int_ty = types.Integer.from_bitwidth(bitwidth, signed)
|
||
|
llvm_type = ir.IntType(bitwidth)
|
||
|
|
||
|
start_preprocessor = _randrange_preprocessor(bitwidth, low)
|
||
|
stop_preprocessor = _randrange_preprocessor(bitwidth, high)
|
||
|
|
||
|
@intrinsic
|
||
|
def _impl(typingcontext, low, high):
|
||
|
def codegen(context, builder, sig, args):
|
||
|
start, stop = args
|
||
|
|
||
|
start = start_preprocessor(builder, start, llvm_type)
|
||
|
stop = stop_preprocessor(builder, stop, llvm_type)
|
||
|
step = ir.Constant(llvm_type, 1)
|
||
|
return _randrange_impl(context, builder, start, stop, step,
|
||
|
llvm_type, signed, 'np')
|
||
|
return signature(int_ty, low, high), codegen
|
||
|
return lambda low, high: _impl(low, high)
|
||
|
|
||
|
|
||
|
@overload(np.random.randint)
|
||
|
def np_randint_impl_3(low, high, size):
|
||
|
if (isinstance(low, types.Integer) and isinstance(high, types.Integer) and
|
||
|
is_nonelike(size)):
|
||
|
return lambda low, high, size: np.random.randint(low, high)
|
||
|
if (isinstance(low, types.Integer) and isinstance(high, types.Integer) and
|
||
|
(isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer)))):
|
||
|
bitwidth = max(low.bitwidth, high.bitwidth)
|
||
|
result_type = getattr(np, f'int{bitwidth}')
|
||
|
|
||
|
def _impl(low, high, size):
|
||
|
out = np.empty(size, dtype=result_type)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.randint(low, high)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.uniform)
|
||
|
def np_uniform_impl0():
|
||
|
return lambda: np.random.uniform(0.0, 1.0)
|
||
|
|
||
|
|
||
|
@overload(random.uniform)
|
||
|
def uniform_impl2(a, b):
|
||
|
if isinstance(a, (types.Float, types.Integer)) and isinstance(
|
||
|
b, (types.Float, types.Integer)):
|
||
|
@intrinsic
|
||
|
def _impl(typingcontext, a, b):
|
||
|
low_preprocessor = _double_preprocessor(a)
|
||
|
high_preprocessor = _double_preprocessor(b)
|
||
|
return signature(types.float64, a, b), uniform_impl(
|
||
|
'py', low_preprocessor, high_preprocessor)
|
||
|
return lambda a, b: _impl(a, b)
|
||
|
|
||
|
|
||
|
@overload(np.random.uniform)
|
||
|
def np_uniform_impl2(low, high):
|
||
|
if isinstance(low, (types.Float, types.Integer)) and isinstance(
|
||
|
high, (types.Float, types.Integer)):
|
||
|
@intrinsic
|
||
|
def _impl(typingcontext, low, high):
|
||
|
low_preprocessor = _double_preprocessor(low)
|
||
|
high_preprocessor = _double_preprocessor(high)
|
||
|
return signature(types.float64, low, high), uniform_impl(
|
||
|
'np', low_preprocessor, high_preprocessor)
|
||
|
return lambda low, high: _impl(low, high)
|
||
|
|
||
|
|
||
|
def uniform_impl(state, a_preprocessor, b_preprocessor):
|
||
|
def impl(context, builder, sig, args):
|
||
|
state_ptr = get_state_ptr(context, builder, state)
|
||
|
a, b = args
|
||
|
a = a_preprocessor(builder, a)
|
||
|
b = b_preprocessor(builder, b)
|
||
|
width = builder.fsub(b, a)
|
||
|
r = get_next_double(context, builder, state_ptr)
|
||
|
return builder.fadd(a, builder.fmul(width, r))
|
||
|
return impl
|
||
|
|
||
|
|
||
|
@overload(np.random.uniform)
|
||
|
def np_uniform_impl3(low, high, size):
|
||
|
if (isinstance(low, (types.Float, types.Integer)) and isinstance(
|
||
|
high, (types.Float, types.Integer)) and
|
||
|
is_nonelike(size)):
|
||
|
return lambda low, high, size: np.random.uniform(low, high)
|
||
|
if (isinstance(low, (types.Float, types.Integer)) and isinstance(
|
||
|
high, (types.Float, types.Integer)) and
|
||
|
(isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer)))):
|
||
|
def _impl(low, high, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.uniform(low, high)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(random.triangular)
|
||
|
def triangular_impl_2(low, high):
|
||
|
def _impl(low, high):
|
||
|
u = random.random()
|
||
|
c = 0.5
|
||
|
if u > c:
|
||
|
u = 1.0 - u
|
||
|
low, high = high, low
|
||
|
return low + (high - low) * math.sqrt(u * c)
|
||
|
|
||
|
if isinstance(low, (types.Float, types.Integer)) and isinstance(
|
||
|
high, (types.Float, types.Integer)):
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(random.triangular)
|
||
|
def triangular_impl_3(low, high, mode):
|
||
|
if (isinstance(low, (types.Float, types.Integer)) and isinstance(
|
||
|
high, (types.Float, types.Integer)) and
|
||
|
isinstance(mode, (types.Float, types.Integer))):
|
||
|
def _impl(low, high, mode):
|
||
|
if high == low:
|
||
|
return low
|
||
|
u = random.random()
|
||
|
c = (mode - low) / (high - low)
|
||
|
if u > c:
|
||
|
u = 1.0 - u
|
||
|
c = 1.0 - c
|
||
|
low, high = high, low
|
||
|
return low + (high - low) * math.sqrt(u * c)
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.triangular)
|
||
|
def triangular_impl_3(left, mode, right):
|
||
|
if (isinstance(left, (types.Float, types.Integer)) and isinstance(
|
||
|
mode, (types.Float, types.Integer)) and
|
||
|
isinstance(right, (types.Float, types.Integer))):
|
||
|
def _impl(left, mode, right):
|
||
|
if right == left:
|
||
|
return left
|
||
|
u = np.random.random()
|
||
|
c = (mode - left) / (right - left)
|
||
|
if u > c:
|
||
|
u = 1.0 - u
|
||
|
c = 1.0 - c
|
||
|
left, right = right, left
|
||
|
return left + (right - left) * math.sqrt(u * c)
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.triangular)
|
||
|
def triangular_impl(left, mode, right, size=None):
|
||
|
if is_nonelike(size):
|
||
|
return lambda left, mode, right, size=None: np.random.triangular(left,
|
||
|
mode,
|
||
|
right)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(left, mode, right, size=None):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.triangular(left, mode, right)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(random.gammavariate)
|
||
|
def gammavariate_impl(alpha, beta):
|
||
|
if isinstance(alpha, (types.Float, types.Integer)) and isinstance(
|
||
|
beta, (types.Float, types.Integer)):
|
||
|
return _gammavariate_impl(random.random)
|
||
|
|
||
|
|
||
|
@overload(np.random.standard_gamma)
|
||
|
@overload(np.random.gamma)
|
||
|
def ol_np_random_gamma1(shape):
|
||
|
if isinstance(shape, (types.Float, types.Integer)):
|
||
|
return lambda shape: np.random.gamma(shape, 1.0)
|
||
|
|
||
|
|
||
|
@overload(np.random.gamma)
|
||
|
def ol_np_random_gamma2(shape, scale):
|
||
|
if isinstance(shape, (types.Float, types.Integer)) and isinstance(
|
||
|
scale, (types.Float, types.Integer)):
|
||
|
fn = register_jitable(_gammavariate_impl(np.random.random))
|
||
|
def impl(shape, scale):
|
||
|
return fn(shape, scale)
|
||
|
return impl
|
||
|
|
||
|
|
||
|
def _gammavariate_impl(_random):
|
||
|
def _impl(alpha, beta):
|
||
|
"""Gamma distribution. Taken from CPython.
|
||
|
"""
|
||
|
SG_MAGICCONST = 1.0 + math.log(4.5)
|
||
|
# alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
|
||
|
|
||
|
# Warning: a few older sources define the gamma distribution in terms
|
||
|
# of alpha > -1.0
|
||
|
if alpha <= 0.0 or beta <= 0.0:
|
||
|
raise ValueError('gammavariate: alpha and beta must be > 0.0')
|
||
|
|
||
|
if alpha > 1.0:
|
||
|
# Uses R.C.H. Cheng, "The generation of Gamma
|
||
|
# variables with non-integral shape parameters",
|
||
|
# Applied Statistics, (1977), 26, No. 1, p71-74
|
||
|
ainv = math.sqrt(2.0 * alpha - 1.0)
|
||
|
bbb = alpha - math.log(4.0)
|
||
|
ccc = alpha + ainv
|
||
|
|
||
|
while 1:
|
||
|
u1 = _random()
|
||
|
if not 1e-7 < u1 < .9999999:
|
||
|
continue
|
||
|
u2 = 1.0 - _random()
|
||
|
v = math.log(u1/(1.0-u1))/ainv
|
||
|
x = alpha*math.exp(v)
|
||
|
z = u1*u1*u2
|
||
|
r = bbb+ccc*v-x
|
||
|
if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= math.log(z):
|
||
|
return x * beta
|
||
|
|
||
|
elif alpha == 1.0:
|
||
|
# expovariate(1)
|
||
|
|
||
|
# Adjust due to cpython
|
||
|
# commit 63d152232e1742660f481c04a811f824b91f6790
|
||
|
return -math.log(1.0 - _random()) * beta
|
||
|
|
||
|
else: # alpha is between 0 and 1 (exclusive)
|
||
|
# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
|
||
|
while 1:
|
||
|
u = _random()
|
||
|
b = (math.e + alpha)/math.e
|
||
|
p = b*u
|
||
|
if p <= 1.0:
|
||
|
x = p ** (1.0/alpha)
|
||
|
else:
|
||
|
x = -math.log((b-p)/alpha)
|
||
|
u1 = _random()
|
||
|
if p > 1.0:
|
||
|
if u1 <= x ** (alpha - 1.0):
|
||
|
break
|
||
|
elif u1 <= math.exp(-x):
|
||
|
break
|
||
|
return x * beta
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.gamma)
|
||
|
def gamma_impl(shape, scale, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda shape, scale, size: np.random.gamma(shape, scale)
|
||
|
if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer)):
|
||
|
def _impl(shape, scale, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.gamma(shape, scale)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.standard_gamma)
|
||
|
def standard_gamma_impl(shape, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda shape, size: np.random.standard_gamma(shape)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(shape, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.standard_gamma(shape)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(random.betavariate)
|
||
|
def betavariate_impl(alpha, beta):
|
||
|
if isinstance(alpha, (types.Float, types.Integer)) and isinstance(
|
||
|
beta, (types.Float, types.Integer)):
|
||
|
return _betavariate_impl(random.gammavariate)
|
||
|
|
||
|
|
||
|
@overload(np.random.beta)
|
||
|
def ol_np_random_beta(a, b):
|
||
|
if isinstance(a, (types.Float, types.Integer)) and isinstance(
|
||
|
b, (types.Float, types.Integer)):
|
||
|
fn = register_jitable(_betavariate_impl(np.random.gamma))
|
||
|
def impl(a, b):
|
||
|
return fn(a, b)
|
||
|
return impl
|
||
|
|
||
|
|
||
|
def _betavariate_impl(gamma):
|
||
|
def _impl(alpha, beta):
|
||
|
"""Beta distribution. Taken from CPython.
|
||
|
"""
|
||
|
# This version due to Janne Sinkkonen, and matches all the std
|
||
|
# texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
|
||
|
y = gamma(alpha, 1.)
|
||
|
if y == 0.0:
|
||
|
return 0.0
|
||
|
else:
|
||
|
return y / (y + gamma(beta, 1.))
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.beta)
|
||
|
def beta_impl(a, b, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda a, b, size: np.random.beta(a, b)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(a, b, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.beta(a, b)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(random.expovariate)
|
||
|
def expovariate_impl(lambd):
|
||
|
if isinstance(lambd, types.Float):
|
||
|
def _impl(lambd):
|
||
|
"""Exponential distribution. Taken from CPython.
|
||
|
"""
|
||
|
# lambd: rate lambd = 1/mean
|
||
|
# ('lambda' is a Python reserved word)
|
||
|
|
||
|
# we use 1-random() instead of random() to preclude the
|
||
|
# possibility of taking the log of zero.
|
||
|
return -math.log(1.0 - random.random()) / lambd
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.exponential)
|
||
|
def exponential_impl(scale):
|
||
|
if isinstance(scale, (types.Float, types.Integer)):
|
||
|
def _impl(scale):
|
||
|
return -math.log(1.0 - np.random.random()) * scale
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.exponential)
|
||
|
def exponential_impl(scale, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda scale, size: np.random.exponential(scale)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(scale, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.exponential(scale)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.standard_exponential)
|
||
|
@overload(np.random.exponential)
|
||
|
def exponential_impl():
|
||
|
def _impl():
|
||
|
return -math.log(1.0 - np.random.random())
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.standard_exponential)
|
||
|
def standard_exponential_impl(size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda size: np.random.standard_exponential()
|
||
|
if (isinstance(size, types.Integer) or
|
||
|
(isinstance(size, types.UniTuple) and isinstance(size.dtype,
|
||
|
types.Integer))
|
||
|
):
|
||
|
def _impl(size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.standard_exponential()
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.lognormal)
|
||
|
def np_lognormal_impl0():
|
||
|
return lambda: np.random.lognormal(0.0, 1.0)
|
||
|
|
||
|
|
||
|
@overload(np.random.lognormal)
|
||
|
def np_log_normal_impl1(mean):
|
||
|
if isinstance(mean, (types.Float, types.Integer)):
|
||
|
return lambda mean: np.random.lognormal(mean, 1.0)
|
||
|
|
||
|
|
||
|
@overload(np.random.lognormal)
|
||
|
def np_log_normal_impl2(mean, sigma):
|
||
|
if isinstance(mean, (types.Float, types.Integer)) and isinstance(
|
||
|
sigma, (types.Float, types.Integer)):
|
||
|
fn = register_jitable(_lognormvariate_impl(np.random.normal))
|
||
|
return lambda mean, sigma: fn(mean, sigma)
|
||
|
|
||
|
|
||
|
@overload(np.random.lognormal)
|
||
|
def lognormal_impl(mean, sigma, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda mean, sigma, size: np.random.lognormal(mean, sigma)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(mean, sigma, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.lognormal(mean, sigma)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(random.lognormvariate)
|
||
|
def lognormvariate_impl(mu, sigma):
|
||
|
if isinstance(mu, types.Float) and isinstance(sigma, types.Float):
|
||
|
fn = register_jitable(_lognormvariate_impl(random.gauss))
|
||
|
return lambda mu, sigma: fn(mu, sigma)
|
||
|
|
||
|
|
||
|
def _lognormvariate_impl(_gauss):
|
||
|
return lambda mu, sigma: math.exp(_gauss(mu, sigma))
|
||
|
|
||
|
|
||
|
@overload(random.paretovariate)
|
||
|
def paretovariate_impl(alpha):
|
||
|
if isinstance(alpha, types.Float):
|
||
|
def _impl(alpha):
|
||
|
"""Pareto distribution. Taken from CPython."""
|
||
|
# Jain, pg. 495
|
||
|
u = 1.0 - random.random()
|
||
|
return 1.0 / u ** (1.0/alpha)
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.pareto)
|
||
|
def pareto_impl(a):
|
||
|
if isinstance(a, types.Float):
|
||
|
def _impl(a):
|
||
|
# Same as paretovariate() - 1.
|
||
|
u = 1.0 - np.random.random()
|
||
|
return 1.0 / u ** (1.0/a) - 1
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.pareto)
|
||
|
def pareto_impl(a, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda a, size: np.random.pareto(a)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(a, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.pareto(a)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(random.weibullvariate)
|
||
|
def weibullvariate_impl(alpha, beta):
|
||
|
if isinstance(alpha, (types.Float, types.Integer)) and isinstance(
|
||
|
beta, (types.Float, types.Integer)):
|
||
|
def _impl(alpha, beta):
|
||
|
"""Weibull distribution. Taken from CPython."""
|
||
|
# Jain, pg. 499; bug fix courtesy Bill Arms
|
||
|
u = 1.0 - random.random()
|
||
|
return alpha * (-math.log(u)) ** (1.0/beta)
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.weibull)
|
||
|
def weibull_impl(a):
|
||
|
if isinstance(a, (types.Float, types.Integer)):
|
||
|
def _impl(a):
|
||
|
# Same as weibullvariate(1.0, a)
|
||
|
u = 1.0 - np.random.random()
|
||
|
return (-math.log(u)) ** (1.0/a)
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.weibull)
|
||
|
def weibull_impl2(a, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda a, size: np.random.weibull(a)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(a, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.weibull(a)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(random.vonmisesvariate)
|
||
|
def vonmisesvariate_impl(mu, kappa):
|
||
|
if isinstance(mu, types.Float) and isinstance(kappa, types.Float):
|
||
|
return _vonmisesvariate_impl(random.random)
|
||
|
|
||
|
|
||
|
@overload(np.random.vonmises)
|
||
|
def vonmisesvariate_impl(mu, kappa):
|
||
|
if isinstance(mu, types.Float) and isinstance(kappa, types.Float):
|
||
|
return _vonmisesvariate_impl(np.random.random)
|
||
|
|
||
|
|
||
|
def _vonmisesvariate_impl(_random):
|
||
|
def _impl(mu, kappa):
|
||
|
"""Circular data distribution. Taken from CPython.
|
||
|
Note the algorithm in Python 2.6 and Numpy is different:
|
||
|
http://bugs.python.org/issue17141
|
||
|
"""
|
||
|
# mu: mean angle (in radians between 0 and 2*pi)
|
||
|
# kappa: concentration parameter kappa (>= 0)
|
||
|
# if kappa = 0 generate uniform random angle
|
||
|
|
||
|
# Based upon an algorithm published in: Fisher, N.I.,
|
||
|
# "Statistical Analysis of Circular Data", Cambridge
|
||
|
# University Press, 1993.
|
||
|
|
||
|
# Thanks to Magnus Kessler for a correction to the
|
||
|
# implementation of step 4.
|
||
|
if kappa <= 1e-6:
|
||
|
return 2.0 * math.pi * _random()
|
||
|
|
||
|
s = 0.5 / kappa
|
||
|
r = s + math.sqrt(1.0 + s * s)
|
||
|
|
||
|
while 1:
|
||
|
u1 = _random()
|
||
|
z = math.cos(math.pi * u1)
|
||
|
|
||
|
d = z / (r + z)
|
||
|
u2 = _random()
|
||
|
if u2 < 1.0 - d * d or u2 <= (1.0 - d) * math.exp(d):
|
||
|
break
|
||
|
|
||
|
q = 1.0 / r
|
||
|
f = (q + z) / (1.0 + q * z)
|
||
|
u3 = _random()
|
||
|
if u3 > 0.5:
|
||
|
theta = (mu + math.acos(f)) % (2.0 * math.pi)
|
||
|
else:
|
||
|
theta = (mu - math.acos(f)) % (2.0 * math.pi)
|
||
|
|
||
|
return theta
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.vonmises)
|
||
|
def vonmises_impl(mu, kappa, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda mu, kappa, size: np.random.vonmises(mu, kappa)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(mu, kappa, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.vonmises(mu, kappa)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.binomial)
|
||
|
def binomial_impl(n, p):
|
||
|
if isinstance(n, types.Integer) and isinstance(
|
||
|
p, (types.Float, types.Integer)):
|
||
|
def _impl(n, p):
|
||
|
"""
|
||
|
Binomial distribution. Numpy's variant of the BINV algorithm
|
||
|
is used.
|
||
|
(Numpy uses BTPE for n*p >= 30, though)
|
||
|
"""
|
||
|
if n < 0:
|
||
|
raise ValueError("binomial(): n <= 0")
|
||
|
if not (0.0 <= p <= 1.0):
|
||
|
raise ValueError("binomial(): p outside of [0, 1]")
|
||
|
if p == 0.0:
|
||
|
return 0
|
||
|
if p == 1.0:
|
||
|
return n
|
||
|
|
||
|
flipped = p > 0.5
|
||
|
if flipped:
|
||
|
p = 1.0 - p
|
||
|
q = 1.0 - p
|
||
|
|
||
|
niters = 1
|
||
|
qn = q ** n
|
||
|
while qn <= 1e-308:
|
||
|
# Underflow => split into several iterations
|
||
|
# Note this is much slower than Numpy's BTPE
|
||
|
niters <<= 2
|
||
|
n >>= 2
|
||
|
qn = q ** n
|
||
|
assert n > 0
|
||
|
|
||
|
np_prod = n * p
|
||
|
bound = min(n, np_prod + 10.0 * math.sqrt(np_prod * q + 1))
|
||
|
|
||
|
total = 0
|
||
|
while niters > 0:
|
||
|
X = 0
|
||
|
U = np.random.random()
|
||
|
px = qn
|
||
|
while X <= bound:
|
||
|
if U <= px:
|
||
|
total += n - X if flipped else X
|
||
|
niters -= 1
|
||
|
break
|
||
|
U -= px
|
||
|
X += 1
|
||
|
px = ((n - X + 1) * p * px) / (X * q)
|
||
|
|
||
|
return total
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.binomial)
|
||
|
def binomial_impl(n, p, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda n, p, size: np.random.binomial(n, p)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(n, p, size):
|
||
|
out = np.empty(size, dtype=np.intp)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.binomial(n, p)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.chisquare)
|
||
|
def chisquare_impl(df):
|
||
|
if isinstance(df, (types.Float, types.Integer)):
|
||
|
def _impl(df):
|
||
|
return 2.0 * np.random.standard_gamma(df / 2.0)
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.chisquare)
|
||
|
def chisquare_impl2(df, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda df, size: np.random.chisquare(df)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(df, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.chisquare(df)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.f)
|
||
|
def f_impl(dfnum, dfden):
|
||
|
if isinstance(dfnum, (types.Float, types.Integer)) and isinstance(
|
||
|
dfden, (types.Float, types.Integer)):
|
||
|
def _impl(dfnum, dfden):
|
||
|
return ((np.random.chisquare(dfnum) * dfden) /
|
||
|
(np.random.chisquare(dfden) * dfnum))
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.f)
|
||
|
def f_impl(dfnum, dfden, size):
|
||
|
if (isinstance(dfnum, (types.Float, types.Integer)) and isinstance(
|
||
|
dfden, (types.Float, types.Integer)) and
|
||
|
is_nonelike(size)):
|
||
|
return lambda dfnum, dfden, size: np.random.f(dfnum, dfden)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(dfnum, dfden, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.f(dfnum, dfden)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.geometric)
|
||
|
def geometric_impl(p):
|
||
|
if isinstance(p, (types.Float, types.Integer)):
|
||
|
def _impl(p):
|
||
|
# Numpy's algorithm.
|
||
|
if p <= 0.0 or p > 1.0:
|
||
|
raise ValueError("geometric(): p outside of (0, 1]")
|
||
|
q = 1.0 - p
|
||
|
if p >= 0.333333333333333333333333:
|
||
|
X = int(1)
|
||
|
sum = prod = p
|
||
|
U = np.random.random()
|
||
|
while U > sum:
|
||
|
prod *= q
|
||
|
sum += prod
|
||
|
X += 1
|
||
|
return X
|
||
|
else:
|
||
|
return math.ceil(math.log(1.0 - np.random.random()) /
|
||
|
math.log(q))
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.geometric)
|
||
|
def geometric_impl(p, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda p, size: np.random.geometric(p)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(p, size):
|
||
|
out = np.empty(size, dtype=np.int64)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.geometric(p)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.gumbel)
|
||
|
def gumbel_impl(loc, scale):
|
||
|
if isinstance(loc, (types.Float, types.Integer)) and isinstance(
|
||
|
scale, (types.Float, types.Integer)):
|
||
|
def _impl(loc, scale):
|
||
|
U = 1.0 - np.random.random()
|
||
|
return loc - scale * math.log(-math.log(U))
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.gumbel)
|
||
|
def gumbel_impl3(loc, scale, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda loc, scale, size: np.random.gumbel(loc, scale)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(loc, scale, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.gumbel(loc, scale)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.hypergeometric)
|
||
|
def hypergeometric_impl(ngood, nbad, nsample):
|
||
|
if (isinstance(ngood, (types.Float, types.Integer)) and isinstance(
|
||
|
nbad, (types.Float, types.Integer))
|
||
|
and isinstance(nsample, (types.Float, types.Integer))):
|
||
|
def _impl(ngood, nbad, nsample):
|
||
|
"""Numpy's algorithm for hypergeometric()."""
|
||
|
d1 = int(nbad) + int(ngood) - int(nsample)
|
||
|
d2 = float(min(nbad, ngood))
|
||
|
|
||
|
Y = d2
|
||
|
K = int(nsample)
|
||
|
while Y > 0.0 and K > 0:
|
||
|
Y -= math.floor(np.random.random() + Y / (d1 + K))
|
||
|
K -= 1
|
||
|
Z = int(d2 - Y)
|
||
|
if ngood > nbad:
|
||
|
return int(nsample) - Z
|
||
|
else:
|
||
|
return Z
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.hypergeometric)
|
||
|
def hypergeometric_impl(ngood, nbad, nsample, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda ngood, nbad, nsample, size:\
|
||
|
np.random.hypergeometric(ngood, nbad, nsample)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(ngood, nbad, nsample, size):
|
||
|
out = np.empty(size, dtype=np.intp)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.hypergeometric(ngood, nbad, nsample)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.laplace)
|
||
|
def laplace_impl0():
|
||
|
return lambda: np.random.laplace(0.0, 1.0)
|
||
|
|
||
|
|
||
|
@overload(np.random.laplace)
|
||
|
def laplace_impl1(loc):
|
||
|
if isinstance(loc, (types.Float, types.Integer)):
|
||
|
return lambda loc: np.random.laplace(loc, 1.0)
|
||
|
|
||
|
|
||
|
@overload(np.random.laplace)
|
||
|
def laplace_impl2(loc, scale):
|
||
|
if isinstance(loc, (types.Float, types.Integer)) and isinstance(
|
||
|
scale, (types.Float, types.Integer)):
|
||
|
return laplace_impl
|
||
|
|
||
|
|
||
|
@overload(np.random.laplace)
|
||
|
def laplace_impl3(loc, scale, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda loc, scale, size: np.random.laplace(loc, scale)
|
||
|
if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer)):
|
||
|
def _impl(loc, scale, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.laplace(loc, scale)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
def laplace_impl(loc, scale):
|
||
|
U = np.random.random()
|
||
|
if U < 0.5:
|
||
|
return loc + scale * math.log(U + U)
|
||
|
else:
|
||
|
return loc - scale * math.log(2.0 - U - U)
|
||
|
|
||
|
|
||
|
@overload(np.random.logistic)
|
||
|
def logistic_impl0():
|
||
|
return lambda: np.random.logistic(0.0, 1.0)
|
||
|
|
||
|
|
||
|
@overload(np.random.logistic)
|
||
|
def logistic_impl1(loc):
|
||
|
if isinstance(loc, (types.Float, types.Integer)):
|
||
|
return lambda loc: np.random.logistic(loc, 1.0)
|
||
|
|
||
|
|
||
|
@overload(np.random.logistic)
|
||
|
def logistic_impl2(loc, scale):
|
||
|
if isinstance(loc, (types.Float, types.Integer)) and isinstance(
|
||
|
scale, (types.Float, types.Integer)):
|
||
|
return logistic_impl
|
||
|
|
||
|
|
||
|
@overload(np.random.logistic)
|
||
|
def logistic_impl3(loc, scale, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda loc, scale, size: np.random.logistic(loc, scale)
|
||
|
if (isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer))):
|
||
|
def _impl(loc, scale, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.logistic(loc, scale)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
def logistic_impl(loc, scale):
|
||
|
U = np.random.random()
|
||
|
return loc + scale * math.log(U / (1.0 - U))
|
||
|
|
||
|
|
||
|
def _logseries_impl(p):
|
||
|
"""Numpy's algorithm for logseries()."""
|
||
|
if p <= 0.0 or p > 1.0:
|
||
|
raise ValueError("logseries(): p outside of (0, 1]")
|
||
|
r = math.log(1.0 - p)
|
||
|
|
||
|
while 1:
|
||
|
V = np.random.random()
|
||
|
if V >= p:
|
||
|
return 1
|
||
|
U = np.random.random()
|
||
|
q = 1.0 - math.exp(r * U)
|
||
|
if V <= q * q:
|
||
|
# XXX what if V == 0.0 ?
|
||
|
return np.int64(1.0 + math.log(V) / math.log(q))
|
||
|
elif V >= q:
|
||
|
return 1
|
||
|
else:
|
||
|
return 2
|
||
|
|
||
|
|
||
|
@overload(np.random.logseries)
|
||
|
def logseries_impl(p):
|
||
|
if isinstance(p, (types.Float, types.Integer)):
|
||
|
return _logseries_impl
|
||
|
|
||
|
|
||
|
@overload(np.random.logseries)
|
||
|
def logseries_impl(p, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda p, size: np.random.logseries(p)
|
||
|
if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer)):
|
||
|
def _impl(p, size):
|
||
|
out = np.empty(size, dtype=np.int64)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.logseries(p)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.negative_binomial)
|
||
|
def negative_binomial_impl(n, p):
|
||
|
if isinstance(n, types.Integer) and isinstance(
|
||
|
p,(types.Float, types.Integer)):
|
||
|
def _impl(n, p):
|
||
|
if n <= 0:
|
||
|
raise ValueError("negative_binomial(): n <= 0")
|
||
|
if p < 0.0 or p > 1.0:
|
||
|
raise ValueError("negative_binomial(): p outside of [0, 1]")
|
||
|
Y = np.random.gamma(n, (1.0 - p) / p)
|
||
|
return np.random.poisson(Y)
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.poisson)
|
||
|
def poisson_impl0():
|
||
|
return lambda: np.random.poisson(1.0)
|
||
|
|
||
|
|
||
|
@overload(np.random.poisson)
|
||
|
def poisson_impl1(lam):
|
||
|
if isinstance(lam, (types.Float, types.Integer)):
|
||
|
@intrinsic
|
||
|
def _impl(typingcontext, lam):
|
||
|
lam_preprocessor = _double_preprocessor(lam)
|
||
|
|
||
|
def codegen(context, builder, sig, args):
|
||
|
state_ptr = get_np_state_ptr(context, builder)
|
||
|
|
||
|
retptr = cgutils.alloca_once(builder, int64_t, name="ret")
|
||
|
bbcont = builder.append_basic_block("bbcont")
|
||
|
bbend = builder.append_basic_block("bbend")
|
||
|
|
||
|
lam, = args
|
||
|
lam = lam_preprocessor(builder, lam)
|
||
|
big_lam = builder.fcmp_ordered('>=', lam,
|
||
|
ir.Constant(double, 10.0))
|
||
|
with builder.if_then(big_lam):
|
||
|
# For lambda >= 10.0, we switch to a more accurate
|
||
|
# algorithm (see _random.c).
|
||
|
fnty = ir.FunctionType(int64_t, (rnd_state_ptr_t, double))
|
||
|
fn = cgutils.get_or_insert_function(builder.function.module,
|
||
|
fnty,
|
||
|
"numba_poisson_ptrs")
|
||
|
ret = builder.call(fn, (state_ptr, lam))
|
||
|
builder.store(ret, retptr)
|
||
|
builder.branch(bbend)
|
||
|
|
||
|
builder.branch(bbcont)
|
||
|
builder.position_at_end(bbcont)
|
||
|
|
||
|
_random = np.random.random
|
||
|
_exp = math.exp
|
||
|
|
||
|
def poisson_impl(lam):
|
||
|
"""Numpy's algorithm for poisson() on small *lam*.
|
||
|
|
||
|
This method is invoked only if the parameter lambda of the
|
||
|
distribution is small ( < 10 ). The algorithm used is
|
||
|
described in "Knuth, D. 1969. 'Seminumerical Algorithms.
|
||
|
The Art of Computer Programming' vol 2.
|
||
|
"""
|
||
|
if lam < 0.0:
|
||
|
raise ValueError("poisson(): lambda < 0")
|
||
|
if lam == 0.0:
|
||
|
return 0
|
||
|
enlam = _exp(-lam)
|
||
|
X = 0
|
||
|
prod = 1.0
|
||
|
while 1:
|
||
|
U = _random()
|
||
|
prod *= U
|
||
|
if prod <= enlam:
|
||
|
return X
|
||
|
X += 1
|
||
|
|
||
|
ret = context.compile_internal(builder, poisson_impl, sig, args)
|
||
|
builder.store(ret, retptr)
|
||
|
builder.branch(bbend)
|
||
|
builder.position_at_end(bbend)
|
||
|
return builder.load(retptr)
|
||
|
return signature(types.int64, lam), codegen
|
||
|
return lambda lam: _impl(lam)
|
||
|
|
||
|
|
||
|
@overload(np.random.poisson)
|
||
|
def poisson_impl2(lam, size):
|
||
|
if isinstance(lam, (types.Float, types.Integer)) and is_nonelike(size):
|
||
|
return lambda lam, size: np.random.poisson(lam)
|
||
|
if isinstance(lam, (types.Float, types.Integer)) and (
|
||
|
isinstance(size, types.Integer) or
|
||
|
(isinstance(size, types.UniTuple) and isinstance(size.dtype,
|
||
|
types.Integer))
|
||
|
):
|
||
|
def _impl(lam, size):
|
||
|
out = np.empty(size, dtype=np.intp)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.poisson(lam)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.power)
|
||
|
def power_impl(a):
|
||
|
if isinstance(a, (types.Float, types.Integer)):
|
||
|
def _impl(a):
|
||
|
if a <= 0.0:
|
||
|
raise ValueError("power(): a <= 0")
|
||
|
return math.pow(1 - math.exp(-np.random.standard_exponential()),
|
||
|
1./a)
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.power)
|
||
|
def power_impl(a, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda a, size: np.random.power(a)
|
||
|
if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer)):
|
||
|
def _impl(a, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.power(a)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.rayleigh)
|
||
|
def rayleigh_impl0():
|
||
|
return lambda: np.random.rayleigh(1.0)
|
||
|
|
||
|
|
||
|
@overload(np.random.rayleigh)
|
||
|
def rayleigh_impl1(scale):
|
||
|
if isinstance(scale, (types.Float, types.Integer)):
|
||
|
def impl(scale):
|
||
|
if scale <= 0.0:
|
||
|
raise ValueError("rayleigh(): scale <= 0")
|
||
|
return scale * math.sqrt(-2.0 * math.log(1.0 - np.random.random()))
|
||
|
return impl
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
@overload(np.random.rayleigh)
|
||
|
def rayleigh_impl2(scale, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda scale, size: np.random.rayleigh(scale)
|
||
|
if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer)):
|
||
|
def _impl(scale, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.rayleigh(scale)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.standard_cauchy)
|
||
|
def cauchy_impl():
|
||
|
def _impl():
|
||
|
return np.random.standard_normal() / np.random.standard_normal()
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.standard_cauchy)
|
||
|
def standard_cauchy_impl(size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda size: np.random.standard_cauchy()
|
||
|
if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer)):
|
||
|
def _impl(size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.standard_cauchy()
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.standard_t)
|
||
|
def standard_t_impl(df):
|
||
|
if isinstance(df, (types.Float, types.Integer)):
|
||
|
def _impl(df):
|
||
|
N = np.random.standard_normal()
|
||
|
G = np.random.standard_gamma(df / 2.0)
|
||
|
X = math.sqrt(df / 2.0) * N / math.sqrt(G)
|
||
|
return X
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.standard_t)
|
||
|
def standard_t_impl2(df, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda p, size: np.random.standard_t(p)
|
||
|
if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer)):
|
||
|
def _impl(df, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.standard_t(df)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.wald)
|
||
|
def wald_impl(mean, scale):
|
||
|
if isinstance(mean, types.Float) and isinstance(scale, types.Float):
|
||
|
def _impl(mean, scale):
|
||
|
if mean <= 0.0:
|
||
|
raise ValueError("wald(): mean <= 0")
|
||
|
if scale <= 0.0:
|
||
|
raise ValueError("wald(): scale <= 0")
|
||
|
mu_2l = mean / (2.0 * scale)
|
||
|
Y = np.random.standard_normal()
|
||
|
Y = mean * Y * Y
|
||
|
X = mean + mu_2l * (Y - math.sqrt(4 * scale * Y + Y * Y))
|
||
|
U = np.random.random()
|
||
|
if U <= mean / (mean + X):
|
||
|
return X
|
||
|
else:
|
||
|
return mean * mean / X
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.wald)
|
||
|
def wald_impl2(mean, scale, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda mean, scale, size: np.random.wald(mean, scale)
|
||
|
if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer)):
|
||
|
def _impl(mean, scale, size):
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.wald(mean, scale)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.zipf)
|
||
|
def zipf_impl(a):
|
||
|
if isinstance(a, types.Float):
|
||
|
def _impl(a):
|
||
|
if a <= 1.0:
|
||
|
raise ValueError("zipf(): a <= 1")
|
||
|
am1 = a - 1.0
|
||
|
b = 2.0 ** am1
|
||
|
while 1:
|
||
|
U = 1.0 - np.random.random()
|
||
|
V = np.random.random()
|
||
|
X = int(math.floor(U ** (-1.0 / am1)))
|
||
|
T = (1.0 + 1.0 / X) ** am1
|
||
|
if X >= 1 and V * X * (T - 1.0) / (b - 1.0) <= (T / b):
|
||
|
return X
|
||
|
|
||
|
return _impl
|
||
|
|
||
|
|
||
|
@overload(np.random.zipf)
|
||
|
def zipf_impl(a, size):
|
||
|
if is_nonelike(size):
|
||
|
return lambda a, size: np.random.zipf(a)
|
||
|
if isinstance(size, types.Integer) or (isinstance(size, types.UniTuple) and
|
||
|
isinstance(size.dtype,
|
||
|
types.Integer)):
|
||
|
def _impl(a, size):
|
||
|
out = np.empty(size, dtype=np.intp)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = np.random.zipf(a)
|
||
|
return out
|
||
|
return _impl
|
||
|
|
||
|
def do_shuffle_impl(x, rng):
|
||
|
|
||
|
if not isinstance(x, types.Buffer):
|
||
|
raise TypeError("The argument to shuffle() should be a buffer type")
|
||
|
|
||
|
if rng == "np":
|
||
|
rand = np.random.randint
|
||
|
elif rng == "py":
|
||
|
rand = random.randrange
|
||
|
|
||
|
if x.ndim == 1:
|
||
|
def impl(x):
|
||
|
i = x.shape[0] - 1
|
||
|
while i > 0:
|
||
|
j = rand(i + 1)
|
||
|
x[i], x[j] = x[j], x[i]
|
||
|
i -= 1
|
||
|
else:
|
||
|
def impl(x):
|
||
|
i = x.shape[0] - 1
|
||
|
while i > 0:
|
||
|
j = rand(i + 1)
|
||
|
x[i], x[j] = np.copy(x[j]), np.copy(x[i])
|
||
|
i -= 1
|
||
|
|
||
|
return impl
|
||
|
|
||
|
|
||
|
@overload(random.shuffle)
|
||
|
def shuffle_impl(x):
|
||
|
return do_shuffle_impl(x, "py")
|
||
|
|
||
|
|
||
|
@overload(np.random.shuffle)
|
||
|
def shuffle_impl(x):
|
||
|
return do_shuffle_impl(x, "np")
|
||
|
|
||
|
|
||
|
@overload(np.random.permutation)
|
||
|
def permutation_impl(x):
|
||
|
if isinstance(x, types.Integer):
|
||
|
def permutation_impl(x):
|
||
|
y = np.arange(x)
|
||
|
np.random.shuffle(y)
|
||
|
return y
|
||
|
elif isinstance(x, types.Array):
|
||
|
def permutation_impl(x):
|
||
|
arr_copy = x.copy()
|
||
|
np.random.shuffle(arr_copy)
|
||
|
return arr_copy
|
||
|
else:
|
||
|
permutation_impl = None
|
||
|
return permutation_impl
|
||
|
|
||
|
|
||
|
# ------------------------------------------------------------------------
|
||
|
# Irregular aliases: np.random.rand, np.random.randn
|
||
|
|
||
|
@overload(np.random.rand)
|
||
|
def rand(*size):
|
||
|
if len(size) == 0:
|
||
|
# Scalar output
|
||
|
def rand_impl(*size):
|
||
|
return np.random.random()
|
||
|
|
||
|
else:
|
||
|
# Array output
|
||
|
def rand_impl(*size):
|
||
|
return np.random.random(size)
|
||
|
|
||
|
return rand_impl
|
||
|
|
||
|
|
||
|
@overload(np.random.randn)
|
||
|
def randn(*size):
|
||
|
if len(size) == 0:
|
||
|
# Scalar output
|
||
|
def randn_impl(*size):
|
||
|
return np.random.standard_normal()
|
||
|
|
||
|
else:
|
||
|
# Array output
|
||
|
def randn_impl(*size):
|
||
|
return np.random.standard_normal(size)
|
||
|
|
||
|
return randn_impl
|
||
|
|
||
|
|
||
|
# ------------------------------------------------------------------------
|
||
|
# np.random.choice
|
||
|
|
||
|
@overload(np.random.choice)
|
||
|
def choice(a, size=None, replace=True):
|
||
|
|
||
|
if isinstance(a, types.Array):
|
||
|
# choice() over an array population
|
||
|
assert a.ndim == 1
|
||
|
dtype = a.dtype
|
||
|
|
||
|
@register_jitable
|
||
|
def get_source_size(a):
|
||
|
return len(a)
|
||
|
|
||
|
@register_jitable
|
||
|
def copy_source(a):
|
||
|
return a.copy()
|
||
|
|
||
|
@register_jitable
|
||
|
def getitem(a, a_i):
|
||
|
return a[a_i]
|
||
|
|
||
|
elif isinstance(a, types.Integer):
|
||
|
# choice() over an implied arange() population
|
||
|
dtype = np.intp
|
||
|
|
||
|
@register_jitable
|
||
|
def get_source_size(a):
|
||
|
return a
|
||
|
|
||
|
@register_jitable
|
||
|
def copy_source(a):
|
||
|
return np.arange(a)
|
||
|
|
||
|
@register_jitable
|
||
|
def getitem(a, a_i):
|
||
|
return a_i
|
||
|
|
||
|
else:
|
||
|
raise TypeError("np.random.choice() first argument should be "
|
||
|
"int or array, got %s" % (a,))
|
||
|
|
||
|
if size in (None, types.none):
|
||
|
def choice_impl(a, size=None, replace=True):
|
||
|
"""
|
||
|
choice() implementation returning a single sample
|
||
|
(note *replace* is ignored)
|
||
|
"""
|
||
|
n = get_source_size(a)
|
||
|
i = np.random.randint(0, n)
|
||
|
return getitem(a, i)
|
||
|
|
||
|
else:
|
||
|
def choice_impl(a, size=None, replace=True):
|
||
|
"""
|
||
|
choice() implementation returning an array of samples
|
||
|
"""
|
||
|
n = get_source_size(a)
|
||
|
if replace:
|
||
|
out = np.empty(size, dtype)
|
||
|
fl = out.flat
|
||
|
for i in range(len(fl)):
|
||
|
j = np.random.randint(0, n)
|
||
|
fl[i] = getitem(a, j)
|
||
|
return out
|
||
|
else:
|
||
|
# Note we have to construct the array to compute out.size
|
||
|
# (`size` can be an arbitrary int or tuple of ints)
|
||
|
out = np.empty(size, dtype)
|
||
|
if out.size > n:
|
||
|
raise ValueError("Cannot take a larger sample than "
|
||
|
"population when 'replace=False'")
|
||
|
# Get a permuted copy of the source array
|
||
|
# we need this implementation in order to get the
|
||
|
# np.random.choice inside numba to match the output
|
||
|
# of np.random.choice outside numba when np.random.seed
|
||
|
# is set to the same value
|
||
|
permuted_a = np.random.permutation(a)
|
||
|
fl = out.flat
|
||
|
for i in range(len(fl)):
|
||
|
fl[i] = permuted_a[i]
|
||
|
return out
|
||
|
|
||
|
return choice_impl
|
||
|
|
||
|
|
||
|
# ------------------------------------------------------------------------
|
||
|
# np.random.multinomial
|
||
|
|
||
|
@overload(np.random.multinomial)
|
||
|
def multinomial(n, pvals, size=None):
|
||
|
|
||
|
dtype = np.intp
|
||
|
|
||
|
@register_jitable
|
||
|
def multinomial_inner(n, pvals, out):
|
||
|
# Numpy's algorithm for multinomial()
|
||
|
fl = out.flat
|
||
|
sz = out.size
|
||
|
plen = len(pvals)
|
||
|
|
||
|
for i in range(0, sz, plen):
|
||
|
# Loop body: take a set of n experiments and fill up
|
||
|
# fl[i:i + plen] with the distribution of results.
|
||
|
|
||
|
# Current sum of outcome probabilities
|
||
|
p_sum = 1.0
|
||
|
# Current remaining number of experiments
|
||
|
n_experiments = n
|
||
|
# For each possible outcome `j`, compute the number of results
|
||
|
# with this outcome. This is done by considering the
|
||
|
# conditional probability P(X=j | X>=j) and running a binomial
|
||
|
# distribution over the remaining number of experiments.
|
||
|
for j in range(0, plen - 1):
|
||
|
p_j = pvals[j]
|
||
|
n_j = fl[i + j] = np.random.binomial(n_experiments, p_j / p_sum)
|
||
|
n_experiments -= n_j
|
||
|
if n_experiments <= 0:
|
||
|
# Note the output was initialized to zero
|
||
|
break
|
||
|
p_sum -= p_j
|
||
|
if n_experiments > 0:
|
||
|
# The remaining experiments end up in the last bucket
|
||
|
fl[i + plen - 1] = n_experiments
|
||
|
|
||
|
if not isinstance(n, types.Integer):
|
||
|
raise TypeError("np.random.multinomial(): n should be an "
|
||
|
"integer, got %s" % (n,))
|
||
|
|
||
|
if not isinstance(pvals, (types.Sequence, types.Array)):
|
||
|
raise TypeError("np.random.multinomial(): pvals should be an "
|
||
|
"array or sequence, got %s" % (pvals,))
|
||
|
|
||
|
if size in (None, types.none):
|
||
|
def multinomial_impl(n, pvals, size=None):
|
||
|
"""
|
||
|
multinomial(..., size=None)
|
||
|
"""
|
||
|
out = np.zeros(len(pvals), dtype)
|
||
|
multinomial_inner(n, pvals, out)
|
||
|
return out
|
||
|
|
||
|
elif isinstance(size, types.Integer):
|
||
|
def multinomial_impl(n, pvals, size=None):
|
||
|
"""
|
||
|
multinomial(..., size=int)
|
||
|
"""
|
||
|
out = np.zeros((size, len(pvals)), dtype)
|
||
|
multinomial_inner(n, pvals, out)
|
||
|
return out
|
||
|
|
||
|
elif isinstance(size, types.BaseTuple):
|
||
|
def multinomial_impl(n, pvals, size=None):
|
||
|
"""
|
||
|
multinomial(..., size=tuple)
|
||
|
"""
|
||
|
out = np.zeros(size + (len(pvals),), dtype)
|
||
|
multinomial_inner(n, pvals, out)
|
||
|
return out
|
||
|
|
||
|
else:
|
||
|
raise TypeError("np.random.multinomial(): size should be int or "
|
||
|
"tuple or None, got %s" % (size,))
|
||
|
|
||
|
return multinomial_impl
|
||
|
|
||
|
# ------------------------------------------------------------------------
|
||
|
# np.random.dirichlet
|
||
|
|
||
|
|
||
|
@overload(np.random.dirichlet)
|
||
|
def dirichlet(alpha):
|
||
|
if isinstance(alpha, (types.Sequence, types.Array)):
|
||
|
def dirichlet_impl(alpha):
|
||
|
out = np.empty(len(alpha))
|
||
|
dirichlet_arr(alpha, out)
|
||
|
return out
|
||
|
return dirichlet_impl
|
||
|
|
||
|
|
||
|
@overload(np.random.dirichlet)
|
||
|
def dirichlet(alpha, size=None):
|
||
|
if not isinstance(alpha, (types.Sequence, types.Array)):
|
||
|
raise NumbaTypeError(
|
||
|
"np.random.dirichlet(): alpha should be an "
|
||
|
"array or sequence, got %s" % (alpha,)
|
||
|
)
|
||
|
|
||
|
if size in (None, types.none):
|
||
|
|
||
|
def dirichlet_impl(alpha, size=None):
|
||
|
out = np.empty(len(alpha))
|
||
|
dirichlet_arr(alpha, out)
|
||
|
return out
|
||
|
|
||
|
elif isinstance(size, types.Integer):
|
||
|
|
||
|
def dirichlet_impl(alpha, size=None):
|
||
|
"""
|
||
|
dirichlet(..., size=int)
|
||
|
"""
|
||
|
out = np.empty((size, len(alpha)))
|
||
|
dirichlet_arr(alpha, out)
|
||
|
return out
|
||
|
|
||
|
elif isinstance(size, types.UniTuple) and isinstance(size.dtype,
|
||
|
types.Integer):
|
||
|
def dirichlet_impl(alpha, size=None):
|
||
|
"""
|
||
|
dirichlet(..., size=tuple)
|
||
|
"""
|
||
|
out = np.empty(size + (len(alpha),))
|
||
|
dirichlet_arr(alpha, out)
|
||
|
return out
|
||
|
|
||
|
else:
|
||
|
raise NumbaTypeError(
|
||
|
"np.random.dirichlet(): size should be int or "
|
||
|
"tuple of ints or None, got %s" % size
|
||
|
)
|
||
|
|
||
|
return dirichlet_impl
|
||
|
|
||
|
|
||
|
@register_jitable
|
||
|
def dirichlet_arr(alpha, out):
|
||
|
|
||
|
# Gamma distribution method to generate a Dirichlet distribution
|
||
|
|
||
|
for a_val in iter(alpha):
|
||
|
if a_val <= 0:
|
||
|
raise ValueError("dirichlet: alpha must be > 0.0")
|
||
|
|
||
|
a_len = len(alpha)
|
||
|
size = out.size
|
||
|
flat = out.flat
|
||
|
for i in range(0, size, a_len):
|
||
|
# calculate gamma random numbers per alpha specifications
|
||
|
norm = 0 # use this to normalize every the group total to 1
|
||
|
for k, w in enumerate(alpha):
|
||
|
flat[i + k] = np.random.gamma(w, 1)
|
||
|
norm += flat[i + k].item()
|
||
|
for k, w in enumerate(alpha):
|
||
|
flat[i + k] /= norm
|
||
|
|
||
|
|
||
|
# ------------------------------------------------------------------------
|
||
|
# np.random.noncentral_chisquare
|
||
|
|
||
|
|
||
|
@overload(np.random.noncentral_chisquare)
|
||
|
def noncentral_chisquare(df, nonc):
|
||
|
if isinstance(df, (types.Float, types.Integer)) and isinstance(
|
||
|
nonc, (types.Float, types.Integer)):
|
||
|
def noncentral_chisquare_impl(df, nonc):
|
||
|
validate_noncentral_chisquare_input(df, nonc)
|
||
|
return noncentral_chisquare_single(df, nonc)
|
||
|
|
||
|
return noncentral_chisquare_impl
|
||
|
|
||
|
|
||
|
@overload(np.random.noncentral_chisquare)
|
||
|
def noncentral_chisquare(df, nonc, size=None):
|
||
|
if size in (None, types.none):
|
||
|
def noncentral_chisquare_impl(df, nonc, size=None):
|
||
|
validate_noncentral_chisquare_input(df, nonc)
|
||
|
return noncentral_chisquare_single(df, nonc)
|
||
|
return noncentral_chisquare_impl
|
||
|
elif isinstance(size, types.Integer) or (isinstance(size, types.UniTuple)
|
||
|
and isinstance(size.dtype,
|
||
|
types.Integer)):
|
||
|
|
||
|
def noncentral_chisquare_impl(df, nonc, size=None):
|
||
|
validate_noncentral_chisquare_input(df, nonc)
|
||
|
out = np.empty(size)
|
||
|
out_flat = out.flat
|
||
|
for idx in range(out.size):
|
||
|
out_flat[idx] = noncentral_chisquare_single(df, nonc)
|
||
|
return out
|
||
|
return noncentral_chisquare_impl
|
||
|
else:
|
||
|
raise NumbaTypeError(
|
||
|
"np.random.noncentral_chisquare(): size should be int or "
|
||
|
"tuple of ints or None, got %s" % size
|
||
|
)
|
||
|
|
||
|
|
||
|
@register_jitable
|
||
|
def noncentral_chisquare_single(df, nonc):
|
||
|
# identical to numpy implementation from distributions.c
|
||
|
# https://github.com/numpy/numpy/blob/c65bc212ec1987caefba0ea7efe6a55803318de9/numpy/random/src/distributions/distributions.c#L797
|
||
|
|
||
|
if np.isnan(nonc):
|
||
|
return np.nan
|
||
|
|
||
|
if 1 < df:
|
||
|
chi2 = np.random.chisquare(df-1)
|
||
|
n = np.random.standard_normal() + np.sqrt(nonc)
|
||
|
return chi2 + n * n
|
||
|
|
||
|
else:
|
||
|
i = np.random.poisson(nonc/2.0)
|
||
|
return np.random.chisquare(df + 2 * i)
|
||
|
|
||
|
|
||
|
@register_jitable
|
||
|
def validate_noncentral_chisquare_input(df, nonc):
|
||
|
if df <= 0:
|
||
|
raise ValueError("df <= 0")
|
||
|
if nonc < 0:
|
||
|
raise ValueError("nonc < 0")
|