ai-content-maker/.venv/Lib/site-packages/numba/cuda/cudadrv/nvvm.py

703 lines
23 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""
This is a direct translation of nvvm.h
"""
import logging
import re
import sys
import warnings
from ctypes import (c_void_p, c_int, POINTER, c_char_p, c_size_t, byref,
c_char)
import threading
from llvmlite import ir
from .error import NvvmError, NvvmSupportError, NvvmWarning
from .libs import get_libdevice, open_libdevice, open_cudalib
from numba.core import cgutils, config
logger = logging.getLogger(__name__)
ADDRSPACE_GENERIC = 0
ADDRSPACE_GLOBAL = 1
ADDRSPACE_SHARED = 3
ADDRSPACE_CONSTANT = 4
ADDRSPACE_LOCAL = 5
# Opaque handle for compilation unit
nvvm_program = c_void_p
# Result code
nvvm_result = c_int
RESULT_CODE_NAMES = '''
NVVM_SUCCESS
NVVM_ERROR_OUT_OF_MEMORY
NVVM_ERROR_PROGRAM_CREATION_FAILURE
NVVM_ERROR_IR_VERSION_MISMATCH
NVVM_ERROR_INVALID_INPUT
NVVM_ERROR_INVALID_PROGRAM
NVVM_ERROR_INVALID_IR
NVVM_ERROR_INVALID_OPTION
NVVM_ERROR_NO_MODULE_IN_PROGRAM
NVVM_ERROR_COMPILATION
'''.split()
for i, k in enumerate(RESULT_CODE_NAMES):
setattr(sys.modules[__name__], k, i)
# Data layouts. NVVM IR 1.8 (CUDA 11.6) introduced 128-bit integer support.
_datalayout_original = ('e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-'
'i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-'
'v64:64:64-v128:128:128-n16:32:64')
_datalayout_i128 = ('e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-'
'i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-'
'v64:64:64-v128:128:128-n16:32:64')
def is_available():
"""
Return if libNVVM is available
"""
try:
NVVM()
except NvvmSupportError:
return False
else:
return True
_nvvm_lock = threading.Lock()
class NVVM(object):
'''Process-wide singleton.
'''
_PROTOTYPES = {
# nvvmResult nvvmVersion(int *major, int *minor)
'nvvmVersion': (nvvm_result, POINTER(c_int), POINTER(c_int)),
# nvvmResult nvvmCreateProgram(nvvmProgram *cu)
'nvvmCreateProgram': (nvvm_result, POINTER(nvvm_program)),
# nvvmResult nvvmDestroyProgram(nvvmProgram *cu)
'nvvmDestroyProgram': (nvvm_result, POINTER(nvvm_program)),
# nvvmResult nvvmAddModuleToProgram(nvvmProgram cu, const char *buffer,
# size_t size, const char *name)
'nvvmAddModuleToProgram': (
nvvm_result, nvvm_program, c_char_p, c_size_t, c_char_p),
# nvvmResult nvvmLazyAddModuleToProgram(nvvmProgram cu,
# const char* buffer,
# size_t size,
# const char *name)
'nvvmLazyAddModuleToProgram': (
nvvm_result, nvvm_program, c_char_p, c_size_t, c_char_p),
# nvvmResult nvvmCompileProgram(nvvmProgram cu, int numOptions,
# const char **options)
'nvvmCompileProgram': (
nvvm_result, nvvm_program, c_int, POINTER(c_char_p)),
# nvvmResult nvvmGetCompiledResultSize(nvvmProgram cu,
# size_t *bufferSizeRet)
'nvvmGetCompiledResultSize': (
nvvm_result, nvvm_program, POINTER(c_size_t)),
# nvvmResult nvvmGetCompiledResult(nvvmProgram cu, char *buffer)
'nvvmGetCompiledResult': (nvvm_result, nvvm_program, c_char_p),
# nvvmResult nvvmGetProgramLogSize(nvvmProgram cu,
# size_t *bufferSizeRet)
'nvvmGetProgramLogSize': (nvvm_result, nvvm_program, POINTER(c_size_t)),
# nvvmResult nvvmGetProgramLog(nvvmProgram cu, char *buffer)
'nvvmGetProgramLog': (nvvm_result, nvvm_program, c_char_p),
# nvvmResult nvvmIRVersion (int* majorIR, int* minorIR, int* majorDbg,
# int* minorDbg )
'nvvmIRVersion': (nvvm_result, POINTER(c_int), POINTER(c_int),
POINTER(c_int), POINTER(c_int)),
# nvvmResult nvvmVerifyProgram (nvvmProgram prog, int numOptions,
# const char** options)
'nvvmVerifyProgram': (nvvm_result, nvvm_program, c_int,
POINTER(c_char_p))
}
# Singleton reference
__INSTANCE = None
def __new__(cls):
with _nvvm_lock:
if cls.__INSTANCE is None:
cls.__INSTANCE = inst = object.__new__(cls)
try:
inst.driver = open_cudalib('nvvm')
except OSError as e:
cls.__INSTANCE = None
errmsg = ("libNVVM cannot be found. Do `conda install "
"cudatoolkit`:\n%s")
raise NvvmSupportError(errmsg % e)
# Find & populate functions
for name, proto in inst._PROTOTYPES.items():
func = getattr(inst.driver, name)
func.restype = proto[0]
func.argtypes = proto[1:]
setattr(inst, name, func)
return cls.__INSTANCE
def __init__(self):
ir_versions = self.get_ir_version()
self._majorIR = ir_versions[0]
self._minorIR = ir_versions[1]
self._majorDbg = ir_versions[2]
self._minorDbg = ir_versions[3]
self._supported_ccs = get_supported_ccs()
@property
def data_layout(self):
if (self._majorIR, self._minorIR) < (1, 8):
return _datalayout_original
else:
return _datalayout_i128
@property
def supported_ccs(self):
return self._supported_ccs
def get_version(self):
major = c_int()
minor = c_int()
err = self.nvvmVersion(byref(major), byref(minor))
self.check_error(err, 'Failed to get version.')
return major.value, minor.value
def get_ir_version(self):
majorIR = c_int()
minorIR = c_int()
majorDbg = c_int()
minorDbg = c_int()
err = self.nvvmIRVersion(byref(majorIR), byref(minorIR),
byref(majorDbg), byref(minorDbg))
self.check_error(err, 'Failed to get IR version.')
return majorIR.value, minorIR.value, majorDbg.value, minorDbg.value
def check_error(self, error, msg, exit=False):
if error:
exc = NvvmError(msg, RESULT_CODE_NAMES[error])
if exit:
print(exc)
sys.exit(1)
else:
raise exc
class CompilationUnit(object):
def __init__(self):
self.driver = NVVM()
self._handle = nvvm_program()
err = self.driver.nvvmCreateProgram(byref(self._handle))
self.driver.check_error(err, 'Failed to create CU')
def __del__(self):
driver = NVVM()
err = driver.nvvmDestroyProgram(byref(self._handle))
driver.check_error(err, 'Failed to destroy CU', exit=True)
def add_module(self, buffer):
"""
Add a module level NVVM IR to a compilation unit.
- The buffer should contain an NVVM module IR either in the bitcode
representation (LLVM3.0) or in the text representation.
"""
err = self.driver.nvvmAddModuleToProgram(self._handle, buffer,
len(buffer), None)
self.driver.check_error(err, 'Failed to add module')
def lazy_add_module(self, buffer):
"""
Lazily add an NVVM IR module to a compilation unit.
The buffer should contain NVVM module IR either in the bitcode
representation or in the text representation.
"""
err = self.driver.nvvmLazyAddModuleToProgram(self._handle, buffer,
len(buffer), None)
self.driver.check_error(err, 'Failed to add module')
def compile(self, **options):
"""Perform Compilation.
Compilation options are accepted as keyword arguments, with the
following considerations:
- Underscores (`_`) in option names are converted to dashes (`-`), to
match NVVM's option name format.
- Options that take a value will be emitted in the form
"-<name>=<value>".
- Booleans passed as option values will be converted to integers.
- Options which take no value (such as `-gen-lto`) should have a value
of `None` passed in and will be emitted in the form "-<name>".
For documentation on NVVM compilation options, see the CUDA Toolkit
Documentation:
https://docs.nvidia.com/cuda/libnvvm-api/index.html#_CPPv418nvvmCompileProgram11nvvmProgramiPPKc
"""
def stringify_option(k, v):
k = k.replace('_', '-')
if v is None:
return f'-{k}'
if isinstance(v, bool):
v = int(v)
return f'-{k}={v}'
options = [stringify_option(k, v) for k, v in options.items()]
c_opts = (c_char_p * len(options))(*[c_char_p(x.encode('utf8'))
for x in options])
# verify
err = self.driver.nvvmVerifyProgram(self._handle, len(options), c_opts)
self._try_error(err, 'Failed to verify\n')
# compile
err = self.driver.nvvmCompileProgram(self._handle, len(options), c_opts)
self._try_error(err, 'Failed to compile\n')
# get result
reslen = c_size_t()
err = self.driver.nvvmGetCompiledResultSize(self._handle, byref(reslen))
self._try_error(err, 'Failed to get size of compiled result.')
ptxbuf = (c_char * reslen.value)()
err = self.driver.nvvmGetCompiledResult(self._handle, ptxbuf)
self._try_error(err, 'Failed to get compiled result.')
# get log
self.log = self.get_log()
if self.log:
warnings.warn(self.log, category=NvvmWarning)
return ptxbuf[:]
def _try_error(self, err, msg):
self.driver.check_error(err, "%s\n%s" % (msg, self.get_log()))
def get_log(self):
reslen = c_size_t()
err = self.driver.nvvmGetProgramLogSize(self._handle, byref(reslen))
self.driver.check_error(err, 'Failed to get compilation log size.')
if reslen.value > 1:
logbuf = (c_char * reslen.value)()
err = self.driver.nvvmGetProgramLog(self._handle, logbuf)
self.driver.check_error(err, 'Failed to get compilation log.')
return logbuf.value.decode('utf8') # populate log attribute
return ''
COMPUTE_CAPABILITIES = (
(3, 5), (3, 7),
(5, 0), (5, 2), (5, 3),
(6, 0), (6, 1), (6, 2),
(7, 0), (7, 2), (7, 5),
(8, 0), (8, 6), (8, 7), (8, 9),
(9, 0)
)
# Maps CTK version -> (min supported cc, max supported cc) inclusive
CTK_SUPPORTED = {
(11, 2): ((3, 5), (8, 6)),
(11, 3): ((3, 5), (8, 6)),
(11, 4): ((3, 5), (8, 7)),
(11, 5): ((3, 5), (8, 7)),
(11, 6): ((3, 5), (8, 7)),
(11, 7): ((3, 5), (8, 7)),
(11, 8): ((3, 5), (9, 0)),
(12, 0): ((5, 0), (9, 0)),
(12, 1): ((5, 0), (9, 0)),
(12, 2): ((5, 0), (9, 0)),
(12, 3): ((5, 0), (9, 0)),
}
def ccs_supported_by_ctk(ctk_version):
try:
# For supported versions, we look up the range of supported CCs
min_cc, max_cc = CTK_SUPPORTED[ctk_version]
return tuple([cc for cc in COMPUTE_CAPABILITIES
if min_cc <= cc <= max_cc])
except KeyError:
# For unsupported CUDA toolkit versions, all we can do is assume all
# non-deprecated versions we are aware of are supported.
return tuple([cc for cc in COMPUTE_CAPABILITIES
if cc >= config.CUDA_DEFAULT_PTX_CC])
def get_supported_ccs():
try:
from numba.cuda.cudadrv.runtime import runtime
cudart_version = runtime.get_version()
except: # noqa: E722
# We can't support anything if there's an error getting the runtime
# version (e.g. if it's not present or there's another issue)
_supported_cc = ()
return _supported_cc
# Ensure the minimum CTK version requirement is met
min_cudart = min(CTK_SUPPORTED)
if cudart_version < min_cudart:
_supported_cc = ()
ctk_ver = f"{cudart_version[0]}.{cudart_version[1]}"
unsupported_ver = (f"CUDA Toolkit {ctk_ver} is unsupported by Numba - "
f"{min_cudart[0]}.{min_cudart[1]} is the minimum "
"required version.")
warnings.warn(unsupported_ver)
return _supported_cc
_supported_cc = ccs_supported_by_ctk(cudart_version)
return _supported_cc
def find_closest_arch(mycc):
"""
Given a compute capability, return the closest compute capability supported
by the CUDA toolkit.
:param mycc: Compute capability as a tuple ``(MAJOR, MINOR)``
:return: Closest supported CC as a tuple ``(MAJOR, MINOR)``
"""
supported_ccs = NVVM().supported_ccs
if not supported_ccs:
msg = "No supported GPU compute capabilities found. " \
"Please check your cudatoolkit version matches your CUDA version."
raise NvvmSupportError(msg)
for i, cc in enumerate(supported_ccs):
if cc == mycc:
# Matches
return cc
elif cc > mycc:
# Exceeded
if i == 0:
# CC lower than supported
msg = "GPU compute capability %d.%d is not supported" \
"(requires >=%d.%d)" % (mycc + cc)
raise NvvmSupportError(msg)
else:
# return the previous CC
return supported_ccs[i - 1]
# CC higher than supported
return supported_ccs[-1] # Choose the highest
def get_arch_option(major, minor):
"""Matches with the closest architecture option
"""
if config.FORCE_CUDA_CC:
arch = config.FORCE_CUDA_CC
else:
arch = find_closest_arch((major, minor))
return 'compute_%d%d' % arch
MISSING_LIBDEVICE_FILE_MSG = '''Missing libdevice file.
Please ensure you have package cudatoolkit >= 11.0
Install package by:
conda install cudatoolkit
'''
class LibDevice(object):
_cache_ = None
def __init__(self):
if self._cache_ is None:
if get_libdevice() is None:
raise RuntimeError(MISSING_LIBDEVICE_FILE_MSG)
self._cache_ = open_libdevice()
self.bc = self._cache_
def get(self):
return self.bc
cas_nvvm = """
%cas_success = cmpxchg volatile {Ti}* %iptr, {Ti} %old, {Ti} %new monotonic monotonic
%cas = extractvalue {{ {Ti}, i1 }} %cas_success, 0
""" # noqa: E501
# Translation of code from CUDA Programming Guide v6.5, section B.12
ir_numba_atomic_binary_template = """
define internal {T} @___numba_atomic_{T}_{FUNC}({T}* %ptr, {T} %val) alwaysinline {{
entry:
%iptr = bitcast {T}* %ptr to {Ti}*
%old2 = load volatile {Ti}, {Ti}* %iptr
br label %attempt
attempt:
%old = phi {Ti} [ %old2, %entry ], [ %cas, %attempt ]
%dold = bitcast {Ti} %old to {T}
%dnew = {OP} {T} %dold, %val
%new = bitcast {T} %dnew to {Ti}
{CAS}
%repeat = icmp ne {Ti} %cas, %old
br i1 %repeat, label %attempt, label %done
done:
%result = bitcast {Ti} %old to {T}
ret {T} %result
}}
""" # noqa: E501
ir_numba_atomic_inc_template = """
define internal {T} @___numba_atomic_{Tu}_inc({T}* %iptr, {T} %val) alwaysinline {{
entry:
%old2 = load volatile {T}, {T}* %iptr
br label %attempt
attempt:
%old = phi {T} [ %old2, %entry ], [ %cas, %attempt ]
%bndchk = icmp ult {T} %old, %val
%inc = add {T} %old, 1
%new = select i1 %bndchk, {T} %inc, {T} 0
{CAS}
%repeat = icmp ne {T} %cas, %old
br i1 %repeat, label %attempt, label %done
done:
ret {T} %old
}}
""" # noqa: E501
ir_numba_atomic_dec_template = """
define internal {T} @___numba_atomic_{Tu}_dec({T}* %iptr, {T} %val) alwaysinline {{
entry:
%old2 = load volatile {T}, {T}* %iptr
br label %attempt
attempt:
%old = phi {T} [ %old2, %entry ], [ %cas, %attempt ]
%dec = add {T} %old, -1
%bndchk = icmp ult {T} %dec, %val
%new = select i1 %bndchk, {T} %dec, {T} %val
{CAS}
%repeat = icmp ne {T} %cas, %old
br i1 %repeat, label %attempt, label %done
done:
ret {T} %old
}}
""" # noqa: E501
ir_numba_atomic_minmax_template = """
define internal {T} @___numba_atomic_{T}_{NAN}{FUNC}({T}* %ptr, {T} %val) alwaysinline {{
entry:
%ptrval = load volatile {T}, {T}* %ptr
; Return early when:
; - For nanmin / nanmax when val is a NaN
; - For min / max when val or ptr is a NaN
%early_return = fcmp uno {T} %val, %{PTR_OR_VAL}val
br i1 %early_return, label %done, label %lt_check
lt_check:
%dold = phi {T} [ %ptrval, %entry ], [ %dcas, %attempt ]
; Continue attempts if dold less or greater than val (depending on whether min or max)
; or if dold is NaN (for nanmin / nanmax)
%cmp = fcmp {OP} {T} %dold, %val
br i1 %cmp, label %attempt, label %done
attempt:
; Attempt to swap in the value
%old = bitcast {T} %dold to {Ti}
%iptr = bitcast {T}* %ptr to {Ti}*
%new = bitcast {T} %val to {Ti}
{CAS}
%dcas = bitcast {Ti} %cas to {T}
br label %lt_check
done:
ret {T} %ptrval
}}
""" # noqa: E501
def ir_cas(Ti):
return cas_nvvm.format(Ti=Ti)
def ir_numba_atomic_binary(T, Ti, OP, FUNC):
params = dict(T=T, Ti=Ti, OP=OP, FUNC=FUNC, CAS=ir_cas(Ti))
return ir_numba_atomic_binary_template.format(**params)
def ir_numba_atomic_minmax(T, Ti, NAN, OP, PTR_OR_VAL, FUNC):
params = dict(T=T, Ti=Ti, NAN=NAN, OP=OP, PTR_OR_VAL=PTR_OR_VAL,
FUNC=FUNC, CAS=ir_cas(Ti))
return ir_numba_atomic_minmax_template.format(**params)
def ir_numba_atomic_inc(T, Tu):
return ir_numba_atomic_inc_template.format(T=T, Tu=Tu, CAS=ir_cas(T))
def ir_numba_atomic_dec(T, Tu):
return ir_numba_atomic_dec_template.format(T=T, Tu=Tu, CAS=ir_cas(T))
def llvm_replace(llvmir):
replacements = [
('declare double @"___numba_atomic_double_add"(double* %".1", double %".2")', # noqa: E501
ir_numba_atomic_binary(T='double', Ti='i64', OP='fadd', FUNC='add')),
('declare float @"___numba_atomic_float_sub"(float* %".1", float %".2")', # noqa: E501
ir_numba_atomic_binary(T='float', Ti='i32', OP='fsub', FUNC='sub')),
('declare double @"___numba_atomic_double_sub"(double* %".1", double %".2")', # noqa: E501
ir_numba_atomic_binary(T='double', Ti='i64', OP='fsub', FUNC='sub')),
('declare i64 @"___numba_atomic_u64_inc"(i64* %".1", i64 %".2")',
ir_numba_atomic_inc(T='i64', Tu='u64')),
('declare i64 @"___numba_atomic_u64_dec"(i64* %".1", i64 %".2")',
ir_numba_atomic_dec(T='i64', Tu='u64')),
('declare float @"___numba_atomic_float_max"(float* %".1", float %".2")', # noqa: E501
ir_numba_atomic_minmax(T='float', Ti='i32', NAN='', OP='nnan olt',
PTR_OR_VAL='ptr', FUNC='max')),
('declare double @"___numba_atomic_double_max"(double* %".1", double %".2")', # noqa: E501
ir_numba_atomic_minmax(T='double', Ti='i64', NAN='', OP='nnan olt',
PTR_OR_VAL='ptr', FUNC='max')),
('declare float @"___numba_atomic_float_min"(float* %".1", float %".2")', # noqa: E501
ir_numba_atomic_minmax(T='float', Ti='i32', NAN='', OP='nnan ogt',
PTR_OR_VAL='ptr', FUNC='min')),
('declare double @"___numba_atomic_double_min"(double* %".1", double %".2")', # noqa: E501
ir_numba_atomic_minmax(T='double', Ti='i64', NAN='', OP='nnan ogt',
PTR_OR_VAL='ptr', FUNC='min')),
('declare float @"___numba_atomic_float_nanmax"(float* %".1", float %".2")', # noqa: E501
ir_numba_atomic_minmax(T='float', Ti='i32', NAN='nan', OP='ult',
PTR_OR_VAL='', FUNC='max')),
('declare double @"___numba_atomic_double_nanmax"(double* %".1", double %".2")', # noqa: E501
ir_numba_atomic_minmax(T='double', Ti='i64', NAN='nan', OP='ult',
PTR_OR_VAL='', FUNC='max')),
('declare float @"___numba_atomic_float_nanmin"(float* %".1", float %".2")', # noqa: E501
ir_numba_atomic_minmax(T='float', Ti='i32', NAN='nan', OP='ugt',
PTR_OR_VAL='', FUNC='min')),
('declare double @"___numba_atomic_double_nanmin"(double* %".1", double %".2")', # noqa: E501
ir_numba_atomic_minmax(T='double', Ti='i64', NAN='nan', OP='ugt',
PTR_OR_VAL='', FUNC='min')),
('immarg', '')
]
for decl, fn in replacements:
llvmir = llvmir.replace(decl, fn)
llvmir = llvm140_to_70_ir(llvmir)
return llvmir
def llvm_to_ptx(llvmir, **opts):
if isinstance(llvmir, str):
llvmir = [llvmir]
if opts.pop('fastmath', False):
opts.update({
'ftz': True,
'fma': True,
'prec_div': False,
'prec_sqrt': False,
})
cu = CompilationUnit()
libdevice = LibDevice()
for mod in llvmir:
mod = llvm_replace(mod)
cu.add_module(mod.encode('utf8'))
cu.lazy_add_module(libdevice.get())
return cu.compile(**opts)
re_attributes_def = re.compile(r"^attributes #\d+ = \{ ([\w\s]+)\ }")
def llvm140_to_70_ir(ir):
"""
Convert LLVM 14.0 IR for LLVM 7.0.
"""
buf = []
for line in ir.splitlines():
if line.startswith('attributes #'):
# Remove function attributes unsupported by LLVM 7.0
m = re_attributes_def.match(line)
attrs = m.group(1).split()
attrs = ' '.join(a for a in attrs if a != 'willreturn')
line = line.replace(m.group(1), attrs)
buf.append(line)
return '\n'.join(buf)
def set_cuda_kernel(function):
"""
Mark a function as a CUDA kernel. Kernels have the following requirements:
- Metadata that marks them as a kernel.
- Addition to the @llvm.used list, so that they will not be discarded.
- The noinline attribute is not permitted, because this causes NVVM to emit
a warning, which counts as failing IR verification.
Presently it is assumed that there is one kernel per module, which holds
for Numba-jitted functions. If this changes in future or this function is
to be used externally, this function may need modification to add to the
@llvm.used list rather than creating it.
"""
module = function.module
# Add kernel metadata
mdstr = ir.MetaDataString(module, "kernel")
mdvalue = ir.Constant(ir.IntType(32), 1)
md = module.add_metadata((function, mdstr, mdvalue))
nmd = cgutils.get_or_insert_named_metadata(module, 'nvvm.annotations')
nmd.add(md)
# Create the used list
ptrty = ir.IntType(8).as_pointer()
usedty = ir.ArrayType(ptrty, 1)
fnptr = function.bitcast(ptrty)
llvm_used = ir.GlobalVariable(module, usedty, 'llvm.used')
llvm_used.linkage = 'appending'
llvm_used.section = 'llvm.metadata'
llvm_used.initializer = ir.Constant(usedty, [fnptr])
# Remove 'noinline' if it is present.
function.attributes.discard('noinline')
def add_ir_version(mod):
"""Add NVVM IR version to module"""
# We specify the IR version to match the current NVVM's IR version
i32 = ir.IntType(32)
ir_versions = [i32(v) for v in NVVM().get_ir_version()]
md_ver = mod.add_metadata(ir_versions)
mod.add_named_metadata('nvvmir.version', md_ver)