ai-content-maker/.venv/Lib/site-packages/numba/cuda/simulator/cudadrv/devices.py

112 lines
2.5 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
from collections import namedtuple
_MemoryInfo = namedtuple("_MemoryInfo", "free,total")
class FakeCUDADevice:
def __init__(self):
self.uuid = 'GPU-00000000-0000-0000-0000-000000000000'
class FakeCUDAContext:
'''
This stub implements functionality only for simulating a single GPU
at the moment.
'''
def __init__(self, device_id):
self._device_id = device_id
self._device = FakeCUDADevice()
def __enter__(self):
pass
def __exit__(self, exc_type, exc_val, exc_tb):
pass
def __str__(self):
return "<Managed Device {self.id}>".format(self=self)
@property
def id(self):
return self._device_id
@property
def device(self):
return self._device
@property
def compute_capability(self):
return (5, 2)
def reset(self):
pass
def get_memory_info(self):
"""
Cross-platform free / total host memory is hard without external
dependencies, e.g. `psutil` - so return infinite memory to maintain API
type compatibility
"""
return _MemoryInfo(float('inf'), float('inf'))
def memalloc(self, sz):
"""
Allocates memory on the simulated device
At present, there is no division between simulated
host memory and simulated device memory.
"""
return np.ndarray(sz, dtype='u1')
def memhostalloc(self, sz, mapped=False, portable=False, wc=False):
'''Allocates memory on the host'''
return self.memalloc(sz)
class FakeDeviceList:
'''
This stub implements a device list containing a single GPU. It also
keeps track of the GPU status, i.e. whether the context is closed or not,
which may have been set by the user calling reset()
'''
def __init__(self):
self.lst = (FakeCUDAContext(0),)
self.closed = False
def __getitem__(self, devnum):
self.closed = False
return self.lst[devnum]
def __str__(self):
return ', '.join([str(d) for d in self.lst])
def __iter__(self):
return iter(self.lst)
def __len__(self):
return len(self.lst)
@property
def current(self):
if self.closed:
return None
return self.lst[0]
gpus = FakeDeviceList()
def reset():
gpus[0].closed = True
def get_context(devnum=0):
return FakeCUDAContext(devnum)
def require_context(func):
'''
In the simulator, a context is always "available", so this is a no-op.
'''
return func