ai-content-maker/.venv/Lib/site-packages/numba/cuda/tests/cudapy/test_ufuncs.py

266 lines
9.1 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import functools
import numpy as np
import unittest
from numba import config, cuda, types
from numba.tests.support import TestCase
from numba.tests.test_ufuncs import BasicUFuncTest
def _make_ufunc_usecase(ufunc):
ldict = {}
arg_str = ','.join(['a{0}'.format(i) for i in range(ufunc.nargs)])
func_str = f'def fn({arg_str}):\n np.{ufunc.__name__}({arg_str})'
exec(func_str, globals(), ldict)
fn = ldict['fn']
fn.__name__ = '{0}_usecase'.format(ufunc.__name__)
return fn
# This test would also be a CUDATestCase, but to avoid a confusing and
# potentially dangerous inheritance diamond with setUp methods that modify
# global state, we implement the necessary parts of CUDATestCase within this
# class instead. These are:
#
# - Disable parallel testing with _numba_parallel_test_.
# - Disabling CUDA performance warnings for the duration of tests.
class TestUFuncs(BasicUFuncTest, TestCase):
_numba_parallel_test_ = False
def setUp(self):
BasicUFuncTest.setUp(self)
# The basic ufunc test does not set up complex inputs, so we'll add
# some here for testing with CUDA.
self.inputs.extend([
(np.complex64(-0.5 - 0.5j), types.complex64),
(np.complex64(0.0), types.complex64),
(np.complex64(0.5 + 0.5j), types.complex64),
(np.complex128(-0.5 - 0.5j), types.complex128),
(np.complex128(0.0), types.complex128),
(np.complex128(0.5 + 0.5j), types.complex128),
(np.array([-0.5 - 0.5j, 0.0, 0.5 + 0.5j], dtype='c8'),
types.Array(types.complex64, 1, 'C')),
(np.array([-0.5 - 0.5j, 0.0, 0.5 + 0.5j], dtype='c16'),
types.Array(types.complex128, 1, 'C')),
])
# Test with multiple dimensions
self.inputs.extend([
# Basic 2D and 3D arrays
(np.linspace(0, 1).reshape((5, -1)),
types.Array(types.float64, 2, 'C')),
(np.linspace(0, 1).reshape((2, 5, -1)),
types.Array(types.float64, 3, 'C')),
# Complex data (i.e. interleaved)
(np.linspace(0, 1 + 1j).reshape(5, -1),
types.Array(types.complex128, 2, 'C')),
# F-ordered
(np.asfortranarray(np.linspace(0, 1).reshape((5, -1))),
types.Array(types.float64, 2, 'F')),
])
# Add tests for other integer types
self.inputs.extend([
(np.uint8(0), types.uint8),
(np.uint8(1), types.uint8),
(np.int8(-1), types.int8),
(np.int8(0), types.int8),
(np.uint16(0), types.uint16),
(np.uint16(1), types.uint16),
(np.int16(-1), types.int16),
(np.int16(0), types.int16),
(np.ulonglong(0), types.ulonglong),
(np.ulonglong(1), types.ulonglong),
(np.longlong(-1), types.longlong),
(np.longlong(0), types.longlong),
(np.array([0,1], dtype=np.ulonglong),
types.Array(types.ulonglong, 1, 'C')),
(np.array([0,1], dtype=np.longlong),
types.Array(types.longlong, 1, 'C')),
])
self._low_occupancy_warnings = config.CUDA_LOW_OCCUPANCY_WARNINGS
self._warn_on_implicit_copy = config.CUDA_WARN_ON_IMPLICIT_COPY
# Disable warnings about low gpu utilization in the test suite
config.CUDA_LOW_OCCUPANCY_WARNINGS = 0
# Disable warnings about host arrays in the test suite
config.CUDA_WARN_ON_IMPLICIT_COPY = 0
def tearDown(self):
# Restore original warning settings
config.CUDA_LOW_OCCUPANCY_WARNINGS = self._low_occupancy_warnings
config.CUDA_WARN_ON_IMPLICIT_COPY = self._warn_on_implicit_copy
def _make_ufunc_usecase(self, ufunc):
return _make_ufunc_usecase(ufunc)
@functools.lru_cache(maxsize=None)
def _compile(self, pyfunc, args):
# We return an already-configured kernel so that basic_ufunc_test can
# call it just like it does for a CPU function
return cuda.jit(args)(pyfunc)[1, 1]
def basic_int_ufunc_test(self, name=None):
skip_inputs = [
types.float32,
types.float64,
types.Array(types.float32, 1, 'C'),
types.Array(types.float32, 2, 'C'),
types.Array(types.float64, 1, 'C'),
types.Array(types.float64, 2, 'C'),
types.Array(types.float64, 3, 'C'),
types.Array(types.float64, 2, 'F'),
types.complex64,
types.complex128,
types.Array(types.complex64, 1, 'C'),
types.Array(types.complex64, 2, 'C'),
types.Array(types.complex128, 1, 'C'),
types.Array(types.complex128, 2, 'C'),
]
self.basic_ufunc_test(name, skip_inputs=skip_inputs)
############################################################################
# Trigonometric Functions
def test_sin_ufunc(self):
self.basic_ufunc_test(np.sin, kinds='cf')
def test_cos_ufunc(self):
self.basic_ufunc_test(np.cos, kinds='cf')
def test_tan_ufunc(self):
self.basic_ufunc_test(np.tan, kinds='cf')
def test_arcsin_ufunc(self):
self.basic_ufunc_test(np.arcsin, kinds='cf')
def test_arccos_ufunc(self):
self.basic_ufunc_test(np.arccos, kinds='cf')
def test_arctan_ufunc(self):
self.basic_ufunc_test(np.arctan, kinds='cf')
def test_arctan2_ufunc(self):
self.basic_ufunc_test(np.arctan2, kinds='f')
def test_hypot_ufunc(self):
self.basic_ufunc_test(np.hypot, kinds='f')
def test_sinh_ufunc(self):
self.basic_ufunc_test(np.sinh, kinds='cf')
def test_cosh_ufunc(self):
self.basic_ufunc_test(np.cosh, kinds='cf')
def test_tanh_ufunc(self):
self.basic_ufunc_test(np.tanh, kinds='cf')
def test_arcsinh_ufunc(self):
self.basic_ufunc_test(np.arcsinh, kinds='cf')
def test_arccosh_ufunc(self):
self.basic_ufunc_test(np.arccosh, kinds='cf')
def test_arctanh_ufunc(self):
# arctanh is only valid is only finite in the range ]-1, 1[
# This means that for any of the integer types it will produce
# conversion from infinity/-infinity to integer. That's undefined
# behavior in C, so the results may vary from implementation to
# implementation. This means that the result from the compiler
# used to compile NumPy may differ from the result generated by
# llvm. Skipping the integer types in this test avoids failed
# tests because of this.
to_skip = [types.Array(types.uint32, 1, 'C'), types.uint32,
types.Array(types.int32, 1, 'C'), types.int32,
types.Array(types.uint64, 1, 'C'), types.uint64,
types.Array(types.int64, 1, 'C'), types.int64]
self.basic_ufunc_test(np.arctanh, skip_inputs=to_skip, kinds='cf')
def test_deg2rad_ufunc(self):
self.basic_ufunc_test(np.deg2rad, kinds='f')
def test_rad2deg_ufunc(self):
self.basic_ufunc_test(np.rad2deg, kinds='f')
def test_degrees_ufunc(self):
self.basic_ufunc_test(np.degrees, kinds='f')
def test_radians_ufunc(self):
self.basic_ufunc_test(np.radians, kinds='f')
############################################################################
# Comparison functions
def test_greater_ufunc(self):
self.signed_unsigned_cmp_test(np.greater)
def test_greater_equal_ufunc(self):
self.signed_unsigned_cmp_test(np.greater_equal)
def test_less_ufunc(self):
self.signed_unsigned_cmp_test(np.less)
def test_less_equal_ufunc(self):
self.signed_unsigned_cmp_test(np.less_equal)
def test_not_equal_ufunc(self):
self.signed_unsigned_cmp_test(np.not_equal)
def test_equal_ufunc(self):
self.signed_unsigned_cmp_test(np.equal)
def test_logical_and_ufunc(self):
self.basic_ufunc_test(np.logical_and)
def test_logical_or_ufunc(self):
self.basic_ufunc_test(np.logical_or)
def test_logical_xor_ufunc(self):
self.basic_ufunc_test(np.logical_xor)
def test_logical_not_ufunc(self):
self.basic_ufunc_test(np.logical_not)
def test_maximum_ufunc(self):
self.basic_ufunc_test(np.maximum)
def test_minimum_ufunc(self):
self.basic_ufunc_test(np.minimum)
def test_fmax_ufunc(self):
self.basic_ufunc_test(np.fmax)
def test_fmin_ufunc(self):
self.basic_ufunc_test(np.fmin)
def test_bitwise_and_ufunc(self):
self.basic_int_ufunc_test(np.bitwise_and)
def test_bitwise_or_ufunc(self):
self.basic_int_ufunc_test(np.bitwise_or)
def test_bitwise_xor_ufunc(self):
self.basic_int_ufunc_test(np.bitwise_xor)
def test_invert_ufunc(self):
self.basic_int_ufunc_test(np.invert)
def test_bitwise_not_ufunc(self):
self.basic_int_ufunc_test(np.bitwise_not)
# Note: there is no entry for np.left_shift and np.right_shift
# because their implementations in NumPy have undefined behavior
# when the second argument is a negative. See the comment in
# numba/tests/test_ufuncs.py for more details.
if __name__ == '__main__':
unittest.main()