ai-content-maker/.venv/Lib/site-packages/numba/np/ufunc/dufunc.py

666 lines
26 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import functools
import warnings
import numpy as np
from numba import jit, typeof
from numba.core import cgutils, types, serialize, sigutils, errors
from numba.core.extending import (is_jitted, overload_attribute,
overload_method, register_jitable,
intrinsic)
from numba.core.typing import npydecl
from numba.core.typing.templates import AbstractTemplate, signature
from numba.cpython.unsafe.tuple import tuple_setitem
from numba.np.ufunc import _internal
from numba.parfors import array_analysis
from numba.np.ufunc import ufuncbuilder
from numba.np import numpy_support
from typing import Callable
from llvmlite import ir
def make_dufunc_kernel(_dufunc):
from numba.np import npyimpl
class DUFuncKernel(npyimpl._Kernel):
"""
npyimpl._Kernel subclass responsible for lowering a DUFunc kernel
(element-wise function) inside a broadcast loop (which is
generated by npyimpl.numpy_ufunc_kernel()).
"""
dufunc = _dufunc
def __init__(self, context, builder, outer_sig):
super(DUFuncKernel, self).__init__(context, builder, outer_sig)
self.inner_sig, self.cres = self.dufunc.find_ewise_function(
outer_sig.args)
def generate(self, *args):
isig = self.inner_sig
osig = self.outer_sig
cast_args = [self.cast(val, inty, outty)
for val, inty, outty in
zip(args, osig.args, isig.args)]
if self.cres.objectmode:
func_type = self.context.call_conv.get_function_type(
types.pyobject, [types.pyobject] * len(isig.args))
else:
func_type = self.context.call_conv.get_function_type(
isig.return_type, isig.args)
module = self.builder.block.function.module
entry_point = cgutils.get_or_insert_function(
module, func_type,
self.cres.fndesc.llvm_func_name)
entry_point.attributes.add("alwaysinline")
_, res = self.context.call_conv.call_function(
self.builder, entry_point, isig.return_type, isig.args,
cast_args)
return self.cast(res, isig.return_type, osig.return_type)
DUFuncKernel.__name__ += _dufunc.ufunc.__name__
return DUFuncKernel
class DUFuncLowerer(object):
'''Callable class responsible for lowering calls to a specific DUFunc.
'''
def __init__(self, dufunc):
self.kernel = make_dufunc_kernel(dufunc)
self.libs = []
def __call__(self, context, builder, sig, args):
from numba.np import npyimpl
return npyimpl.numpy_ufunc_kernel(context, builder, sig, args,
self.kernel.dufunc.ufunc,
self.kernel)
class DUFunc(serialize.ReduceMixin, _internal._DUFunc):
"""
Dynamic universal function (DUFunc) intended to act like a normal
Numpy ufunc, but capable of call-time (just-in-time) compilation
of fast loops specialized to inputs.
"""
# NOTE: __base_kwargs must be kept in synch with the kwlist in
# _internal.c:dufunc_init()
__base_kwargs = set(('identity', '_keepalive', 'nin', 'nout'))
def __init__(self, py_func, identity=None, cache=False, targetoptions={}):
if is_jitted(py_func):
py_func = py_func.py_func
with ufuncbuilder._suppress_deprecation_warning_nopython_not_supplied():
dispatcher = jit(_target='npyufunc',
cache=cache,
**targetoptions)(py_func)
self._initialize(dispatcher, identity)
functools.update_wrapper(self, py_func)
def _initialize(self, dispatcher, identity):
identity = ufuncbuilder.parse_identity(identity)
super(DUFunc, self).__init__(dispatcher, identity=identity)
# Loop over a copy of the keys instead of the keys themselves,
# since we're changing the dictionary while looping.
self._install_type()
self._lower_me = DUFuncLowerer(self)
self._install_cg()
self.__name__ = dispatcher.py_func.__name__
self.__doc__ = dispatcher.py_func.__doc__
def _reduce_states(self):
"""
NOTE: part of ReduceMixin protocol
"""
siglist = list(self._dispatcher.overloads.keys())
return dict(
dispatcher=self._dispatcher,
identity=self.identity,
frozen=self._frozen,
siglist=siglist,
)
@classmethod
def _rebuild(cls, dispatcher, identity, frozen, siglist):
"""
NOTE: part of ReduceMixin protocol
"""
self = _internal._DUFunc.__new__(cls)
self._initialize(dispatcher, identity)
# Re-add signatures
for sig in siglist:
self.add(sig)
if frozen:
self.disable_compile()
return self
def build_ufunc(self):
"""
For compatibility with the various *UFuncBuilder classes.
"""
return self
@property
def targetoptions(self):
return self._dispatcher.targetoptions
@property
def nin(self):
return self.ufunc.nin
@property
def nout(self):
return self.ufunc.nout
@property
def nargs(self):
return self.ufunc.nargs
@property
def ntypes(self):
return self.ufunc.ntypes
@property
def types(self):
return self.ufunc.types
@property
def identity(self):
return self.ufunc.identity
@property
def signature(self):
return self.ufunc.signature
def disable_compile(self):
"""
Disable the compilation of new signatures at call time.
"""
# If disabling compilation then there must be at least one signature
assert len(self._dispatcher.overloads) > 0
self._frozen = True
def add(self, sig):
"""
Compile the DUFunc for the given signature.
"""
args, return_type = sigutils.normalize_signature(sig)
return self._compile_for_argtys(args, return_type)
def __call__(self, *args, **kws):
"""
Allow any argument that has overridden __array_ufunc__ (NEP-18)
to take control of DUFunc.__call__.
"""
default = numpy_support.np.ndarray.__array_ufunc__
for arg in args + tuple(kws.values()):
if getattr(type(arg), "__array_ufunc__", default) is not default:
output = arg.__array_ufunc__(self, "__call__", *args, **kws)
if output is not NotImplemented:
return output
else:
return super().__call__(*args, **kws)
def _compile_for_args(self, *args, **kws):
nin = self.ufunc.nin
if kws:
if 'out' in kws:
out = kws.pop('out')
args += (out,)
if kws:
raise TypeError("unexpected keyword arguments to ufunc: %s"
% ", ".join(repr(k) for k in sorted(kws)))
args_len = len(args)
assert (args_len == nin) or (args_len == nin + self.ufunc.nout)
assert not kws
argtys = []
for arg in args[:nin]:
argty = typeof(arg)
if isinstance(argty, types.Array):
argty = argty.dtype
else:
# To avoid a mismatch in how Numba types scalar values as
# opposed to Numpy, we need special logic for scalars.
# For example, on 64-bit systems, numba.typeof(3) => int32, but
# np.array(3).dtype => int64.
# Note: this will not handle numpy "duckarrays" correctly,
# including but not limited to those implementing `__array__`
# and `__array_ufunc__`.
argty = numpy_support.map_arrayscalar_type(arg)
argtys.append(argty)
return self._compile_for_argtys(tuple(argtys))
def _compile_for_argtys(self, argtys, return_type=None):
"""
Given a tuple of argument types (these should be the array
dtypes, and not the array types themselves), compile the
element-wise function for those inputs, generate a UFunc loop
wrapper, and register the loop with the Numpy ufunc object for
this DUFunc.
"""
if self._frozen:
raise RuntimeError("compilation disabled for %s" % (self,))
assert isinstance(argtys, tuple)
if return_type is None:
sig = argtys
else:
sig = return_type(*argtys)
cres, argtys, return_type = ufuncbuilder._compile_element_wise_function(
self._dispatcher, self.targetoptions, sig)
actual_sig = ufuncbuilder._finalize_ufunc_signature(
cres, argtys, return_type)
dtypenums, ptr, env = ufuncbuilder._build_element_wise_ufunc_wrapper(
cres, actual_sig)
self._add_loop(int(ptr), dtypenums)
self._keepalive.append((ptr, cres.library, env))
self._lower_me.libs.append(cres.library)
return cres
def _install_ufunc_attributes(self, template) -> None:
def get_attr_fn(attr: str) -> Callable:
def impl(ufunc):
val = getattr(ufunc.key[0], attr)
return lambda ufunc: val
return impl
# ntypes/types needs "at" to be a BoundFunction rather than a Function
# But this fails as it cannot a weak reference to an ufunc due to NumPy
# not setting the "tp_weaklistoffset" field. See:
# https://github.com/numpy/numpy/blob/7fc72776b972bfbfdb909e4b15feb0308cf8adba/numpy/core/src/umath/ufunc_object.c#L6968-L6983 # noqa: E501
at = types.Function(template)
attributes = ('nin', 'nout', 'nargs', # 'ntypes', # 'types',
'identity', 'signature')
for attr in attributes:
attr_fn = get_attr_fn(attr)
overload_attribute(at, attr)(attr_fn)
def _install_ufunc_methods(self, template) -> None:
self._install_ufunc_reduce(template)
def _install_ufunc_reduce(self, template) -> None:
at = types.Function(template)
@overload_method(at, 'reduce')
def ol_reduce(ufunc, array, axis=0, dtype=None, initial=None):
warnings.warn("ufunc.reduce feature is experimental",
category=errors.NumbaExperimentalFeatureWarning)
if not isinstance(array, types.Array):
msg = 'The first argument "array" must be array-like'
raise errors.NumbaTypeError(msg)
axis_int = isinstance(axis, types.Integer)
axis_int_tuple = isinstance(axis, types.UniTuple) and \
isinstance(axis.dtype, types.Integer)
axis_empty_tuple = isinstance(axis, types.Tuple) and len(axis) == 0
axis_none = cgutils.is_nonelike(axis)
axis_tuple_size = len(axis) if axis_int_tuple else 0
if self.ufunc.identity is None and not (
(axis_int_tuple and axis_tuple_size == 1) or
axis_empty_tuple or axis_int or axis_none):
msg = (f"reduction operation '{self.ufunc.__name__}' is not "
"reorderable, so at most one axis may be specified")
raise errors.NumbaTypeError(msg)
tup_init = (0,) * (array.ndim)
tup_init_m1 = (0,) * (array.ndim - 1)
nb_dtype = array.dtype if cgutils.is_nonelike(dtype) else dtype
identity = self.identity
id_none = cgutils.is_nonelike(identity)
init_none = cgutils.is_nonelike(initial)
@register_jitable
def tuple_slice(tup, pos):
# Same as
# tup = tup[0 : pos] + tup[pos + 1:]
s = tup_init_m1
i = 0
for j, e in enumerate(tup):
if j == pos:
continue
s = tuple_setitem(s, i, e)
i += 1
return s
@register_jitable
def tuple_slice_append(tup, pos, val):
# Same as
# tup = tup[0 : pos] + val + tup[pos + 1:]
s = tup_init
i, j, sz = 0, 0, len(s)
while j < sz:
if j == pos:
s = tuple_setitem(s, j, val)
else:
e = tup[i]
s = tuple_setitem(s, j, e)
i += 1
j += 1
return s
@intrinsic
def compute_flat_idx(typingctx, strides, itemsize, idx, axis):
sig = types.intp(strides, itemsize, idx, axis)
len_idx = len(idx)
def gen_block(builder, block_pos, block_name, bb_end, args):
strides, _, idx, _ = args
bb = builder.append_basic_block(name=block_name)
with builder.goto_block(bb):
zero = ir.IntType(64)(0)
flat_idx = zero
if block_pos == 0:
for i in range(1, len_idx):
stride = builder.extract_value(strides, i - 1)
idx_i = builder.extract_value(idx, i)
m = builder.mul(stride, idx_i)
flat_idx = builder.add(flat_idx, m)
elif 0 < block_pos < len_idx - 1:
for i in range(0, block_pos):
stride = builder.extract_value(strides, i)
idx_i = builder.extract_value(idx, i)
m = builder.mul(stride, idx_i)
flat_idx = builder.add(flat_idx, m)
for i in range(block_pos + 1, len_idx):
stride = builder.extract_value(strides, i - 1)
idx_i = builder.extract_value(idx, i)
m = builder.mul(stride, idx_i)
flat_idx = builder.add(flat_idx, m)
else:
for i in range(0, len_idx - 1):
stride = builder.extract_value(strides, i)
idx_i = builder.extract_value(idx, i)
m = builder.mul(stride, idx_i)
flat_idx = builder.add(flat_idx, m)
builder.branch(bb_end)
return bb, flat_idx
def codegen(context, builder, sig, args):
strides, itemsize, idx, axis = args
bb = builder.basic_block
switch_end = builder.append_basic_block(name='axis_end')
l = []
for i in range(len_idx):
block, flat_idx = gen_block(builder, i, f"axis_{i}",
switch_end, args)
l.append((block, flat_idx))
with builder.goto_block(bb):
switch = builder.switch(axis, l[-1][0])
for i in range(len_idx):
switch.add_case(i, l[i][0])
builder.position_at_end(switch_end)
phi = builder.phi(l[0][1].type)
for block, value in l:
phi.add_incoming(value, block)
return builder.sdiv(phi, itemsize)
return sig, codegen
@register_jitable
def fixup_axis(axis, ndim):
ax = axis
for i in range(len(axis)):
val = axis[i] + ndim if axis[i] < 0 else axis[i]
ax = tuple_setitem(ax, i, val)
return ax
@register_jitable
def find_min(tup):
idx, e = 0, tup[0]
for i in range(len(tup)):
if tup[i] < e:
idx, e = i, tup[i]
return idx, e
def impl_1d(ufunc, array, axis=0, dtype=None, initial=None):
start = 0
if init_none and id_none:
start = 1
r = array[0]
elif init_none:
r = identity
else:
r = initial
sz = array.shape[0]
for i in range(start, sz):
r = ufunc(r, array[i])
return r
def impl_nd_axis_int(ufunc,
array,
axis=0,
dtype=None,
initial=None):
if axis is None:
raise ValueError("'axis' must be specified")
if axis < 0:
axis += array.ndim
if axis < 0 or axis >= array.ndim:
raise ValueError("Invalid axis")
# create result array
shape = tuple_slice(array.shape, axis)
if initial is None and identity is None:
r = np.empty(shape, dtype=nb_dtype)
for idx, _ in np.ndenumerate(r):
# shape[0:axis] + 0 + shape[axis:]
result_idx = tuple_slice_append(idx, axis, 0)
r[idx] = array[result_idx]
elif initial is None and identity is not None:
# Checking if identity is not none is redundant but required
# compile this block
r = np.full(shape, fill_value=identity, dtype=nb_dtype)
else:
r = np.full(shape, fill_value=initial, dtype=nb_dtype)
# One approach to implement reduce is to remove the axis index
# from the indexing tuple returned by "np.ndenumerate". For
# instance, if idx = (X, Y, Z) and axis=1, the result index
# is (X, Y).
# Another way is to compute the result index using strides,
# which is faster than manipulating tuples.
view = r.ravel()
if initial is None and identity is None:
for idx, val in np.ndenumerate(array):
if idx[axis] == 0:
continue
else:
flat_pos = compute_flat_idx(r.strides, r.itemsize,
idx, axis)
lhs, rhs = view[flat_pos], val
view[flat_pos] = ufunc(lhs, rhs)
else:
for idx, val in np.ndenumerate(array):
if initial is None and identity is None and \
idx[axis] == 0:
continue
flat_pos = compute_flat_idx(r.strides, r.itemsize,
idx, axis)
lhs, rhs = view[flat_pos], val
view[flat_pos] = ufunc(lhs, rhs)
return r
def impl_nd_axis_tuple(ufunc,
array,
axis=0,
dtype=None,
initial=None):
axis_ = fixup_axis(axis, array.ndim)
for i in range(0, len(axis_)):
if axis_[i] < 0 or axis_[i] >= array.ndim:
raise ValueError("Invalid axis")
for j in range(i + 1, len(axis_)):
if axis_[i] == axis_[j]:
raise ValueError("duplicate value in 'axis'")
min_idx, min_elem = find_min(axis_)
r = ufunc.reduce(array,
axis=min_elem,
dtype=dtype,
initial=initial)
if len(axis) == 1:
return r
elif len(axis) == 2:
return ufunc.reduce(r, axis=axis_[(min_idx + 1) % 2] - 1)
else:
ax = axis_tup
for i in range(len(ax)):
if i != min_idx:
ax = tuple_setitem(ax, i, axis_[i])
return ufunc.reduce(r, axis=ax)
def impl_axis_empty_tuple(ufunc,
array,
axis=0,
dtype=None,
initial=None):
return array
def impl_axis_none(ufunc,
array,
axis=0,
dtype=None,
initial=None):
return ufunc.reduce(array, axis_tup, dtype, initial)
if array.ndim == 1 and not axis_empty_tuple:
return impl_1d
elif axis_empty_tuple:
# ufunc(array, axis=())
return impl_axis_empty_tuple
elif axis_none:
# ufunc(array, axis=None)
axis_tup = tuple(range(array.ndim))
return impl_axis_none
elif axis_int_tuple:
# axis is tuple of integers
# ufunc(array, axis=(1, 2, ...))
axis_tup = (0,) * (len(axis) - 1)
return impl_nd_axis_tuple
elif axis == 0 or isinstance(axis, (types.Integer,
types.Omitted,
types.IntegerLiteral)):
# axis is default value (0) or an integer
# ufunc(array, axis=0)
return impl_nd_axis_int
# elif array.ndim == 1:
# return impl_1d
def _install_type(self, typingctx=None):
"""Constructs and installs a typing class for a DUFunc object in the
input typing context. If no typing context is given, then
_install_type() installs into the typing context of the
dispatcher object (should be same default context used by
jit() and njit()).
"""
if typingctx is None:
typingctx = self._dispatcher.targetdescr.typing_context
_ty_cls = type('DUFuncTyping_' + self.ufunc.__name__,
(AbstractTemplate,),
dict(key=self, generic=self._type_me))
typingctx.insert_user_function(self, _ty_cls)
self._install_ufunc_attributes(_ty_cls)
self._install_ufunc_methods(_ty_cls)
def find_ewise_function(self, ewise_types):
"""
Given a tuple of element-wise argument types, find a matching
signature in the dispatcher.
Return a 2-tuple containing the matching signature, and
compilation result. Will return two None's if no matching
signature was found.
"""
if self._frozen:
# If we cannot compile, coerce to the best matching loop
loop = numpy_support.ufunc_find_matching_loop(self, ewise_types)
if loop is None:
return None, None
ewise_types = tuple(loop.inputs + loop.outputs)[:len(ewise_types)]
for sig, cres in self._dispatcher.overloads.items():
if sig.args == ewise_types:
return sig, cres
return None, None
def _type_me(self, argtys, kwtys):
"""
Implement AbstractTemplate.generic() for the typing class
built by DUFunc._install_type().
Return the call-site signature after either validating the
element-wise signature or compiling for it.
"""
assert not kwtys
ufunc = self.ufunc
_handle_inputs_result = npydecl.Numpy_rules_ufunc._handle_inputs(
ufunc, argtys, kwtys)
base_types, explicit_outputs, ndims, layout = _handle_inputs_result
explicit_output_count = len(explicit_outputs)
if explicit_output_count > 0:
ewise_types = tuple(base_types[:-len(explicit_outputs)])
else:
ewise_types = tuple(base_types)
sig, cres = self.find_ewise_function(ewise_types)
if sig is None:
# Matching element-wise signature was not found; must
# compile.
if self._frozen:
raise TypeError("cannot call %s with types %s"
% (self, argtys))
self._compile_for_argtys(ewise_types)
sig, cres = self.find_ewise_function(ewise_types)
assert sig is not None
if explicit_output_count > 0:
outtys = list(explicit_outputs)
elif ufunc.nout == 1:
if ndims > 0:
outtys = [types.Array(sig.return_type, ndims, layout)]
else:
outtys = [sig.return_type]
else:
raise NotImplementedError("typing gufuncs (nout > 1)")
outtys.extend(argtys)
return signature(*outtys)
def _install_cg(self, targetctx=None):
"""
Install an implementation function for a DUFunc object in the
given target context. If no target context is given, then
_install_cg() installs into the target context of the
dispatcher object (should be same default context used by
jit() and njit()).
"""
if targetctx is None:
targetctx = self._dispatcher.targetdescr.target_context
_any = types.Any
_arr = types.Array
# Either all outputs are explicit or none of them are
sig0 = (_any,) * self.ufunc.nin + (_arr,) * self.ufunc.nout
sig1 = (_any,) * self.ufunc.nin
targetctx.insert_func_defn(
[(self._lower_me, self, sig) for sig in (sig0, sig1)])
array_analysis.MAP_TYPES.append(DUFunc)