687 lines
26 KiB
Python
687 lines
26 KiB
Python
|
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
|
||
|
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from typing import Union, Iterable, Optional
|
||
|
from typing_extensions import Literal
|
||
|
|
||
|
import httpx
|
||
|
|
||
|
from .... import _legacy_response
|
||
|
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven
|
||
|
from ...._utils import (
|
||
|
maybe_transform,
|
||
|
async_maybe_transform,
|
||
|
)
|
||
|
from ...._compat import cached_property
|
||
|
from .checkpoints import (
|
||
|
Checkpoints,
|
||
|
AsyncCheckpoints,
|
||
|
CheckpointsWithRawResponse,
|
||
|
AsyncCheckpointsWithRawResponse,
|
||
|
CheckpointsWithStreamingResponse,
|
||
|
AsyncCheckpointsWithStreamingResponse,
|
||
|
)
|
||
|
from ...._resource import SyncAPIResource, AsyncAPIResource
|
||
|
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
|
||
|
from ....pagination import SyncCursorPage, AsyncCursorPage
|
||
|
from ...._base_client import (
|
||
|
AsyncPaginator,
|
||
|
make_request_options,
|
||
|
)
|
||
|
from ....types.fine_tuning import job_list_params, job_create_params, job_list_events_params
|
||
|
from ....types.fine_tuning.fine_tuning_job import FineTuningJob
|
||
|
from ....types.fine_tuning.fine_tuning_job_event import FineTuningJobEvent
|
||
|
|
||
|
__all__ = ["Jobs", "AsyncJobs"]
|
||
|
|
||
|
|
||
|
class Jobs(SyncAPIResource):
|
||
|
@cached_property
|
||
|
def checkpoints(self) -> Checkpoints:
|
||
|
return Checkpoints(self._client)
|
||
|
|
||
|
@cached_property
|
||
|
def with_raw_response(self) -> JobsWithRawResponse:
|
||
|
return JobsWithRawResponse(self)
|
||
|
|
||
|
@cached_property
|
||
|
def with_streaming_response(self) -> JobsWithStreamingResponse:
|
||
|
return JobsWithStreamingResponse(self)
|
||
|
|
||
|
def create(
|
||
|
self,
|
||
|
*,
|
||
|
model: Union[str, Literal["babbage-002", "davinci-002", "gpt-3.5-turbo"]],
|
||
|
training_file: str,
|
||
|
hyperparameters: job_create_params.Hyperparameters | NotGiven = NOT_GIVEN,
|
||
|
integrations: Optional[Iterable[job_create_params.Integration]] | NotGiven = NOT_GIVEN,
|
||
|
seed: Optional[int] | NotGiven = NOT_GIVEN,
|
||
|
suffix: Optional[str] | NotGiven = NOT_GIVEN,
|
||
|
validation_file: Optional[str] | NotGiven = NOT_GIVEN,
|
||
|
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
||
|
# The extra values given here take precedence over values defined on the client or passed to this method.
|
||
|
extra_headers: Headers | None = None,
|
||
|
extra_query: Query | None = None,
|
||
|
extra_body: Body | None = None,
|
||
|
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
||
|
) -> FineTuningJob:
|
||
|
"""
|
||
|
Creates a fine-tuning job which begins the process of creating a new model from
|
||
|
a given dataset.
|
||
|
|
||
|
Response includes details of the enqueued job including job status and the name
|
||
|
of the fine-tuned models once complete.
|
||
|
|
||
|
[Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
|
||
|
|
||
|
Args:
|
||
|
model: The name of the model to fine-tune. You can select one of the
|
||
|
[supported models](https://platform.openai.com/docs/guides/fine-tuning/what-models-can-be-fine-tuned).
|
||
|
|
||
|
training_file: The ID of an uploaded file that contains training data.
|
||
|
|
||
|
See [upload file](https://platform.openai.com/docs/api-reference/files/create)
|
||
|
for how to upload a file.
|
||
|
|
||
|
Your dataset must be formatted as a JSONL file. Additionally, you must upload
|
||
|
your file with the purpose `fine-tune`.
|
||
|
|
||
|
See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
|
||
|
for more details.
|
||
|
|
||
|
hyperparameters: The hyperparameters used for the fine-tuning job.
|
||
|
|
||
|
integrations: A list of integrations to enable for your fine-tuning job.
|
||
|
|
||
|
seed: The seed controls the reproducibility of the job. Passing in the same seed and
|
||
|
job parameters should produce the same results, but may differ in rare cases. If
|
||
|
a seed is not specified, one will be generated for you.
|
||
|
|
||
|
suffix: A string of up to 18 characters that will be added to your fine-tuned model
|
||
|
name.
|
||
|
|
||
|
For example, a `suffix` of "custom-model-name" would produce a model name like
|
||
|
`ft:gpt-3.5-turbo:openai:custom-model-name:7p4lURel`.
|
||
|
|
||
|
validation_file: The ID of an uploaded file that contains validation data.
|
||
|
|
||
|
If you provide this file, the data is used to generate validation metrics
|
||
|
periodically during fine-tuning. These metrics can be viewed in the fine-tuning
|
||
|
results file. The same data should not be present in both train and validation
|
||
|
files.
|
||
|
|
||
|
Your dataset must be formatted as a JSONL file. You must upload your file with
|
||
|
the purpose `fine-tune`.
|
||
|
|
||
|
See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
|
||
|
for more details.
|
||
|
|
||
|
extra_headers: Send extra headers
|
||
|
|
||
|
extra_query: Add additional query parameters to the request
|
||
|
|
||
|
extra_body: Add additional JSON properties to the request
|
||
|
|
||
|
timeout: Override the client-level default timeout for this request, in seconds
|
||
|
"""
|
||
|
return self._post(
|
||
|
"/fine_tuning/jobs",
|
||
|
body=maybe_transform(
|
||
|
{
|
||
|
"model": model,
|
||
|
"training_file": training_file,
|
||
|
"hyperparameters": hyperparameters,
|
||
|
"integrations": integrations,
|
||
|
"seed": seed,
|
||
|
"suffix": suffix,
|
||
|
"validation_file": validation_file,
|
||
|
},
|
||
|
job_create_params.JobCreateParams,
|
||
|
),
|
||
|
options=make_request_options(
|
||
|
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
|
||
|
),
|
||
|
cast_to=FineTuningJob,
|
||
|
)
|
||
|
|
||
|
def retrieve(
|
||
|
self,
|
||
|
fine_tuning_job_id: str,
|
||
|
*,
|
||
|
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
||
|
# The extra values given here take precedence over values defined on the client or passed to this method.
|
||
|
extra_headers: Headers | None = None,
|
||
|
extra_query: Query | None = None,
|
||
|
extra_body: Body | None = None,
|
||
|
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
||
|
) -> FineTuningJob:
|
||
|
"""
|
||
|
Get info about a fine-tuning job.
|
||
|
|
||
|
[Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
|
||
|
|
||
|
Args:
|
||
|
extra_headers: Send extra headers
|
||
|
|
||
|
extra_query: Add additional query parameters to the request
|
||
|
|
||
|
extra_body: Add additional JSON properties to the request
|
||
|
|
||
|
timeout: Override the client-level default timeout for this request, in seconds
|
||
|
"""
|
||
|
if not fine_tuning_job_id:
|
||
|
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
|
||
|
return self._get(
|
||
|
f"/fine_tuning/jobs/{fine_tuning_job_id}",
|
||
|
options=make_request_options(
|
||
|
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
|
||
|
),
|
||
|
cast_to=FineTuningJob,
|
||
|
)
|
||
|
|
||
|
def list(
|
||
|
self,
|
||
|
*,
|
||
|
after: str | NotGiven = NOT_GIVEN,
|
||
|
limit: int | NotGiven = NOT_GIVEN,
|
||
|
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
||
|
# The extra values given here take precedence over values defined on the client or passed to this method.
|
||
|
extra_headers: Headers | None = None,
|
||
|
extra_query: Query | None = None,
|
||
|
extra_body: Body | None = None,
|
||
|
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
||
|
) -> SyncCursorPage[FineTuningJob]:
|
||
|
"""
|
||
|
List your organization's fine-tuning jobs
|
||
|
|
||
|
Args:
|
||
|
after: Identifier for the last job from the previous pagination request.
|
||
|
|
||
|
limit: Number of fine-tuning jobs to retrieve.
|
||
|
|
||
|
extra_headers: Send extra headers
|
||
|
|
||
|
extra_query: Add additional query parameters to the request
|
||
|
|
||
|
extra_body: Add additional JSON properties to the request
|
||
|
|
||
|
timeout: Override the client-level default timeout for this request, in seconds
|
||
|
"""
|
||
|
return self._get_api_list(
|
||
|
"/fine_tuning/jobs",
|
||
|
page=SyncCursorPage[FineTuningJob],
|
||
|
options=make_request_options(
|
||
|
extra_headers=extra_headers,
|
||
|
extra_query=extra_query,
|
||
|
extra_body=extra_body,
|
||
|
timeout=timeout,
|
||
|
query=maybe_transform(
|
||
|
{
|
||
|
"after": after,
|
||
|
"limit": limit,
|
||
|
},
|
||
|
job_list_params.JobListParams,
|
||
|
),
|
||
|
),
|
||
|
model=FineTuningJob,
|
||
|
)
|
||
|
|
||
|
def cancel(
|
||
|
self,
|
||
|
fine_tuning_job_id: str,
|
||
|
*,
|
||
|
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
||
|
# The extra values given here take precedence over values defined on the client or passed to this method.
|
||
|
extra_headers: Headers | None = None,
|
||
|
extra_query: Query | None = None,
|
||
|
extra_body: Body | None = None,
|
||
|
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
||
|
) -> FineTuningJob:
|
||
|
"""
|
||
|
Immediately cancel a fine-tune job.
|
||
|
|
||
|
Args:
|
||
|
extra_headers: Send extra headers
|
||
|
|
||
|
extra_query: Add additional query parameters to the request
|
||
|
|
||
|
extra_body: Add additional JSON properties to the request
|
||
|
|
||
|
timeout: Override the client-level default timeout for this request, in seconds
|
||
|
"""
|
||
|
if not fine_tuning_job_id:
|
||
|
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
|
||
|
return self._post(
|
||
|
f"/fine_tuning/jobs/{fine_tuning_job_id}/cancel",
|
||
|
options=make_request_options(
|
||
|
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
|
||
|
),
|
||
|
cast_to=FineTuningJob,
|
||
|
)
|
||
|
|
||
|
def list_events(
|
||
|
self,
|
||
|
fine_tuning_job_id: str,
|
||
|
*,
|
||
|
after: str | NotGiven = NOT_GIVEN,
|
||
|
limit: int | NotGiven = NOT_GIVEN,
|
||
|
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
||
|
# The extra values given here take precedence over values defined on the client or passed to this method.
|
||
|
extra_headers: Headers | None = None,
|
||
|
extra_query: Query | None = None,
|
||
|
extra_body: Body | None = None,
|
||
|
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
||
|
) -> SyncCursorPage[FineTuningJobEvent]:
|
||
|
"""
|
||
|
Get status updates for a fine-tuning job.
|
||
|
|
||
|
Args:
|
||
|
after: Identifier for the last event from the previous pagination request.
|
||
|
|
||
|
limit: Number of events to retrieve.
|
||
|
|
||
|
extra_headers: Send extra headers
|
||
|
|
||
|
extra_query: Add additional query parameters to the request
|
||
|
|
||
|
extra_body: Add additional JSON properties to the request
|
||
|
|
||
|
timeout: Override the client-level default timeout for this request, in seconds
|
||
|
"""
|
||
|
if not fine_tuning_job_id:
|
||
|
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
|
||
|
return self._get_api_list(
|
||
|
f"/fine_tuning/jobs/{fine_tuning_job_id}/events",
|
||
|
page=SyncCursorPage[FineTuningJobEvent],
|
||
|
options=make_request_options(
|
||
|
extra_headers=extra_headers,
|
||
|
extra_query=extra_query,
|
||
|
extra_body=extra_body,
|
||
|
timeout=timeout,
|
||
|
query=maybe_transform(
|
||
|
{
|
||
|
"after": after,
|
||
|
"limit": limit,
|
||
|
},
|
||
|
job_list_events_params.JobListEventsParams,
|
||
|
),
|
||
|
),
|
||
|
model=FineTuningJobEvent,
|
||
|
)
|
||
|
|
||
|
|
||
|
class AsyncJobs(AsyncAPIResource):
|
||
|
@cached_property
|
||
|
def checkpoints(self) -> AsyncCheckpoints:
|
||
|
return AsyncCheckpoints(self._client)
|
||
|
|
||
|
@cached_property
|
||
|
def with_raw_response(self) -> AsyncJobsWithRawResponse:
|
||
|
return AsyncJobsWithRawResponse(self)
|
||
|
|
||
|
@cached_property
|
||
|
def with_streaming_response(self) -> AsyncJobsWithStreamingResponse:
|
||
|
return AsyncJobsWithStreamingResponse(self)
|
||
|
|
||
|
async def create(
|
||
|
self,
|
||
|
*,
|
||
|
model: Union[str, Literal["babbage-002", "davinci-002", "gpt-3.5-turbo"]],
|
||
|
training_file: str,
|
||
|
hyperparameters: job_create_params.Hyperparameters | NotGiven = NOT_GIVEN,
|
||
|
integrations: Optional[Iterable[job_create_params.Integration]] | NotGiven = NOT_GIVEN,
|
||
|
seed: Optional[int] | NotGiven = NOT_GIVEN,
|
||
|
suffix: Optional[str] | NotGiven = NOT_GIVEN,
|
||
|
validation_file: Optional[str] | NotGiven = NOT_GIVEN,
|
||
|
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
||
|
# The extra values given here take precedence over values defined on the client or passed to this method.
|
||
|
extra_headers: Headers | None = None,
|
||
|
extra_query: Query | None = None,
|
||
|
extra_body: Body | None = None,
|
||
|
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
||
|
) -> FineTuningJob:
|
||
|
"""
|
||
|
Creates a fine-tuning job which begins the process of creating a new model from
|
||
|
a given dataset.
|
||
|
|
||
|
Response includes details of the enqueued job including job status and the name
|
||
|
of the fine-tuned models once complete.
|
||
|
|
||
|
[Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
|
||
|
|
||
|
Args:
|
||
|
model: The name of the model to fine-tune. You can select one of the
|
||
|
[supported models](https://platform.openai.com/docs/guides/fine-tuning/what-models-can-be-fine-tuned).
|
||
|
|
||
|
training_file: The ID of an uploaded file that contains training data.
|
||
|
|
||
|
See [upload file](https://platform.openai.com/docs/api-reference/files/create)
|
||
|
for how to upload a file.
|
||
|
|
||
|
Your dataset must be formatted as a JSONL file. Additionally, you must upload
|
||
|
your file with the purpose `fine-tune`.
|
||
|
|
||
|
See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
|
||
|
for more details.
|
||
|
|
||
|
hyperparameters: The hyperparameters used for the fine-tuning job.
|
||
|
|
||
|
integrations: A list of integrations to enable for your fine-tuning job.
|
||
|
|
||
|
seed: The seed controls the reproducibility of the job. Passing in the same seed and
|
||
|
job parameters should produce the same results, but may differ in rare cases. If
|
||
|
a seed is not specified, one will be generated for you.
|
||
|
|
||
|
suffix: A string of up to 18 characters that will be added to your fine-tuned model
|
||
|
name.
|
||
|
|
||
|
For example, a `suffix` of "custom-model-name" would produce a model name like
|
||
|
`ft:gpt-3.5-turbo:openai:custom-model-name:7p4lURel`.
|
||
|
|
||
|
validation_file: The ID of an uploaded file that contains validation data.
|
||
|
|
||
|
If you provide this file, the data is used to generate validation metrics
|
||
|
periodically during fine-tuning. These metrics can be viewed in the fine-tuning
|
||
|
results file. The same data should not be present in both train and validation
|
||
|
files.
|
||
|
|
||
|
Your dataset must be formatted as a JSONL file. You must upload your file with
|
||
|
the purpose `fine-tune`.
|
||
|
|
||
|
See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
|
||
|
for more details.
|
||
|
|
||
|
extra_headers: Send extra headers
|
||
|
|
||
|
extra_query: Add additional query parameters to the request
|
||
|
|
||
|
extra_body: Add additional JSON properties to the request
|
||
|
|
||
|
timeout: Override the client-level default timeout for this request, in seconds
|
||
|
"""
|
||
|
return await self._post(
|
||
|
"/fine_tuning/jobs",
|
||
|
body=await async_maybe_transform(
|
||
|
{
|
||
|
"model": model,
|
||
|
"training_file": training_file,
|
||
|
"hyperparameters": hyperparameters,
|
||
|
"integrations": integrations,
|
||
|
"seed": seed,
|
||
|
"suffix": suffix,
|
||
|
"validation_file": validation_file,
|
||
|
},
|
||
|
job_create_params.JobCreateParams,
|
||
|
),
|
||
|
options=make_request_options(
|
||
|
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
|
||
|
),
|
||
|
cast_to=FineTuningJob,
|
||
|
)
|
||
|
|
||
|
async def retrieve(
|
||
|
self,
|
||
|
fine_tuning_job_id: str,
|
||
|
*,
|
||
|
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
||
|
# The extra values given here take precedence over values defined on the client or passed to this method.
|
||
|
extra_headers: Headers | None = None,
|
||
|
extra_query: Query | None = None,
|
||
|
extra_body: Body | None = None,
|
||
|
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
||
|
) -> FineTuningJob:
|
||
|
"""
|
||
|
Get info about a fine-tuning job.
|
||
|
|
||
|
[Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
|
||
|
|
||
|
Args:
|
||
|
extra_headers: Send extra headers
|
||
|
|
||
|
extra_query: Add additional query parameters to the request
|
||
|
|
||
|
extra_body: Add additional JSON properties to the request
|
||
|
|
||
|
timeout: Override the client-level default timeout for this request, in seconds
|
||
|
"""
|
||
|
if not fine_tuning_job_id:
|
||
|
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
|
||
|
return await self._get(
|
||
|
f"/fine_tuning/jobs/{fine_tuning_job_id}",
|
||
|
options=make_request_options(
|
||
|
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
|
||
|
),
|
||
|
cast_to=FineTuningJob,
|
||
|
)
|
||
|
|
||
|
def list(
|
||
|
self,
|
||
|
*,
|
||
|
after: str | NotGiven = NOT_GIVEN,
|
||
|
limit: int | NotGiven = NOT_GIVEN,
|
||
|
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
||
|
# The extra values given here take precedence over values defined on the client or passed to this method.
|
||
|
extra_headers: Headers | None = None,
|
||
|
extra_query: Query | None = None,
|
||
|
extra_body: Body | None = None,
|
||
|
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
||
|
) -> AsyncPaginator[FineTuningJob, AsyncCursorPage[FineTuningJob]]:
|
||
|
"""
|
||
|
List your organization's fine-tuning jobs
|
||
|
|
||
|
Args:
|
||
|
after: Identifier for the last job from the previous pagination request.
|
||
|
|
||
|
limit: Number of fine-tuning jobs to retrieve.
|
||
|
|
||
|
extra_headers: Send extra headers
|
||
|
|
||
|
extra_query: Add additional query parameters to the request
|
||
|
|
||
|
extra_body: Add additional JSON properties to the request
|
||
|
|
||
|
timeout: Override the client-level default timeout for this request, in seconds
|
||
|
"""
|
||
|
return self._get_api_list(
|
||
|
"/fine_tuning/jobs",
|
||
|
page=AsyncCursorPage[FineTuningJob],
|
||
|
options=make_request_options(
|
||
|
extra_headers=extra_headers,
|
||
|
extra_query=extra_query,
|
||
|
extra_body=extra_body,
|
||
|
timeout=timeout,
|
||
|
query=maybe_transform(
|
||
|
{
|
||
|
"after": after,
|
||
|
"limit": limit,
|
||
|
},
|
||
|
job_list_params.JobListParams,
|
||
|
),
|
||
|
),
|
||
|
model=FineTuningJob,
|
||
|
)
|
||
|
|
||
|
async def cancel(
|
||
|
self,
|
||
|
fine_tuning_job_id: str,
|
||
|
*,
|
||
|
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
||
|
# The extra values given here take precedence over values defined on the client or passed to this method.
|
||
|
extra_headers: Headers | None = None,
|
||
|
extra_query: Query | None = None,
|
||
|
extra_body: Body | None = None,
|
||
|
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
||
|
) -> FineTuningJob:
|
||
|
"""
|
||
|
Immediately cancel a fine-tune job.
|
||
|
|
||
|
Args:
|
||
|
extra_headers: Send extra headers
|
||
|
|
||
|
extra_query: Add additional query parameters to the request
|
||
|
|
||
|
extra_body: Add additional JSON properties to the request
|
||
|
|
||
|
timeout: Override the client-level default timeout for this request, in seconds
|
||
|
"""
|
||
|
if not fine_tuning_job_id:
|
||
|
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
|
||
|
return await self._post(
|
||
|
f"/fine_tuning/jobs/{fine_tuning_job_id}/cancel",
|
||
|
options=make_request_options(
|
||
|
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
|
||
|
),
|
||
|
cast_to=FineTuningJob,
|
||
|
)
|
||
|
|
||
|
def list_events(
|
||
|
self,
|
||
|
fine_tuning_job_id: str,
|
||
|
*,
|
||
|
after: str | NotGiven = NOT_GIVEN,
|
||
|
limit: int | NotGiven = NOT_GIVEN,
|
||
|
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
||
|
# The extra values given here take precedence over values defined on the client or passed to this method.
|
||
|
extra_headers: Headers | None = None,
|
||
|
extra_query: Query | None = None,
|
||
|
extra_body: Body | None = None,
|
||
|
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
||
|
) -> AsyncPaginator[FineTuningJobEvent, AsyncCursorPage[FineTuningJobEvent]]:
|
||
|
"""
|
||
|
Get status updates for a fine-tuning job.
|
||
|
|
||
|
Args:
|
||
|
after: Identifier for the last event from the previous pagination request.
|
||
|
|
||
|
limit: Number of events to retrieve.
|
||
|
|
||
|
extra_headers: Send extra headers
|
||
|
|
||
|
extra_query: Add additional query parameters to the request
|
||
|
|
||
|
extra_body: Add additional JSON properties to the request
|
||
|
|
||
|
timeout: Override the client-level default timeout for this request, in seconds
|
||
|
"""
|
||
|
if not fine_tuning_job_id:
|
||
|
raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
|
||
|
return self._get_api_list(
|
||
|
f"/fine_tuning/jobs/{fine_tuning_job_id}/events",
|
||
|
page=AsyncCursorPage[FineTuningJobEvent],
|
||
|
options=make_request_options(
|
||
|
extra_headers=extra_headers,
|
||
|
extra_query=extra_query,
|
||
|
extra_body=extra_body,
|
||
|
timeout=timeout,
|
||
|
query=maybe_transform(
|
||
|
{
|
||
|
"after": after,
|
||
|
"limit": limit,
|
||
|
},
|
||
|
job_list_events_params.JobListEventsParams,
|
||
|
),
|
||
|
),
|
||
|
model=FineTuningJobEvent,
|
||
|
)
|
||
|
|
||
|
|
||
|
class JobsWithRawResponse:
|
||
|
def __init__(self, jobs: Jobs) -> None:
|
||
|
self._jobs = jobs
|
||
|
|
||
|
self.create = _legacy_response.to_raw_response_wrapper(
|
||
|
jobs.create,
|
||
|
)
|
||
|
self.retrieve = _legacy_response.to_raw_response_wrapper(
|
||
|
jobs.retrieve,
|
||
|
)
|
||
|
self.list = _legacy_response.to_raw_response_wrapper(
|
||
|
jobs.list,
|
||
|
)
|
||
|
self.cancel = _legacy_response.to_raw_response_wrapper(
|
||
|
jobs.cancel,
|
||
|
)
|
||
|
self.list_events = _legacy_response.to_raw_response_wrapper(
|
||
|
jobs.list_events,
|
||
|
)
|
||
|
|
||
|
@cached_property
|
||
|
def checkpoints(self) -> CheckpointsWithRawResponse:
|
||
|
return CheckpointsWithRawResponse(self._jobs.checkpoints)
|
||
|
|
||
|
|
||
|
class AsyncJobsWithRawResponse:
|
||
|
def __init__(self, jobs: AsyncJobs) -> None:
|
||
|
self._jobs = jobs
|
||
|
|
||
|
self.create = _legacy_response.async_to_raw_response_wrapper(
|
||
|
jobs.create,
|
||
|
)
|
||
|
self.retrieve = _legacy_response.async_to_raw_response_wrapper(
|
||
|
jobs.retrieve,
|
||
|
)
|
||
|
self.list = _legacy_response.async_to_raw_response_wrapper(
|
||
|
jobs.list,
|
||
|
)
|
||
|
self.cancel = _legacy_response.async_to_raw_response_wrapper(
|
||
|
jobs.cancel,
|
||
|
)
|
||
|
self.list_events = _legacy_response.async_to_raw_response_wrapper(
|
||
|
jobs.list_events,
|
||
|
)
|
||
|
|
||
|
@cached_property
|
||
|
def checkpoints(self) -> AsyncCheckpointsWithRawResponse:
|
||
|
return AsyncCheckpointsWithRawResponse(self._jobs.checkpoints)
|
||
|
|
||
|
|
||
|
class JobsWithStreamingResponse:
|
||
|
def __init__(self, jobs: Jobs) -> None:
|
||
|
self._jobs = jobs
|
||
|
|
||
|
self.create = to_streamed_response_wrapper(
|
||
|
jobs.create,
|
||
|
)
|
||
|
self.retrieve = to_streamed_response_wrapper(
|
||
|
jobs.retrieve,
|
||
|
)
|
||
|
self.list = to_streamed_response_wrapper(
|
||
|
jobs.list,
|
||
|
)
|
||
|
self.cancel = to_streamed_response_wrapper(
|
||
|
jobs.cancel,
|
||
|
)
|
||
|
self.list_events = to_streamed_response_wrapper(
|
||
|
jobs.list_events,
|
||
|
)
|
||
|
|
||
|
@cached_property
|
||
|
def checkpoints(self) -> CheckpointsWithStreamingResponse:
|
||
|
return CheckpointsWithStreamingResponse(self._jobs.checkpoints)
|
||
|
|
||
|
|
||
|
class AsyncJobsWithStreamingResponse:
|
||
|
def __init__(self, jobs: AsyncJobs) -> None:
|
||
|
self._jobs = jobs
|
||
|
|
||
|
self.create = async_to_streamed_response_wrapper(
|
||
|
jobs.create,
|
||
|
)
|
||
|
self.retrieve = async_to_streamed_response_wrapper(
|
||
|
jobs.retrieve,
|
||
|
)
|
||
|
self.list = async_to_streamed_response_wrapper(
|
||
|
jobs.list,
|
||
|
)
|
||
|
self.cancel = async_to_streamed_response_wrapper(
|
||
|
jobs.cancel,
|
||
|
)
|
||
|
self.list_events = async_to_streamed_response_wrapper(
|
||
|
jobs.list_events,
|
||
|
)
|
||
|
|
||
|
@cached_property
|
||
|
def checkpoints(self) -> AsyncCheckpointsWithStreamingResponse:
|
||
|
return AsyncCheckpointsWithStreamingResponse(self._jobs.checkpoints)
|