ai-content-maker/.venv/Lib/site-packages/pandas/io/sas/sas_xport.py

508 lines
15 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""
Read a SAS XPort format file into a Pandas DataFrame.
Based on code from Jack Cushman (github.com/jcushman/xport).
The file format is defined here:
https://support.sas.com/content/dam/SAS/support/en/technical-papers/record-layout-of-a-sas-version-5-or-6-data-set-in-sas-transport-xport-format.pdf
"""
from __future__ import annotations
from collections import abc
from datetime import datetime
import struct
import warnings
import numpy as np
from pandas._typing import (
CompressionOptions,
DatetimeNaTType,
FilePath,
ReadBuffer,
)
from pandas.util._decorators import Appender
from pandas.util._exceptions import find_stack_level
import pandas as pd
from pandas.io.common import get_handle
from pandas.io.sas.sasreader import ReaderBase
_correct_line1 = (
"HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!"
"000000000000000000000000000000 "
)
_correct_header1 = (
"HEADER RECORD*******MEMBER HEADER RECORD!!!!!!!000000000000000001600000000"
)
_correct_header2 = (
"HEADER RECORD*******DSCRPTR HEADER RECORD!!!!!!!"
"000000000000000000000000000000 "
)
_correct_obs_header = (
"HEADER RECORD*******OBS HEADER RECORD!!!!!!!"
"000000000000000000000000000000 "
)
_fieldkeys = [
"ntype",
"nhfun",
"field_length",
"nvar0",
"name",
"label",
"nform",
"nfl",
"num_decimals",
"nfj",
"nfill",
"niform",
"nifl",
"nifd",
"npos",
"_",
]
_base_params_doc = """\
Parameters
----------
filepath_or_buffer : str or file-like object
Path to SAS file or object implementing binary read method."""
_params2_doc = """\
index : identifier of index column
Identifier of column that should be used as index of the DataFrame.
encoding : str
Encoding for text data.
chunksize : int
Read file `chunksize` lines at a time, returns iterator."""
_format_params_doc = """\
format : str
File format, only `xport` is currently supported."""
_iterator_doc = """\
iterator : bool, default False
Return XportReader object for reading file incrementally."""
_read_sas_doc = f"""Read a SAS file into a DataFrame.
{_base_params_doc}
{_format_params_doc}
{_params2_doc}
{_iterator_doc}
Returns
-------
DataFrame or XportReader
Examples
--------
Read a SAS Xport file:
>>> df = pd.read_sas('filename.XPT')
Read a Xport file in 10,000 line chunks:
>>> itr = pd.read_sas('filename.XPT', chunksize=10000)
>>> for chunk in itr:
>>> do_something(chunk)
"""
_xport_reader_doc = f"""\
Class for reading SAS Xport files.
{_base_params_doc}
{_params2_doc}
Attributes
----------
member_info : list
Contains information about the file
fields : list
Contains information about the variables in the file
"""
_read_method_doc = """\
Read observations from SAS Xport file, returning as data frame.
Parameters
----------
nrows : int
Number of rows to read from data file; if None, read whole
file.
Returns
-------
A DataFrame.
"""
def _parse_date(datestr: str) -> DatetimeNaTType:
"""Given a date in xport format, return Python date."""
try:
# e.g. "16FEB11:10:07:55"
return datetime.strptime(datestr, "%d%b%y:%H:%M:%S")
except ValueError:
return pd.NaT
def _split_line(s: str, parts):
"""
Parameters
----------
s: str
Fixed-length string to split
parts: list of (name, length) pairs
Used to break up string, name '_' will be filtered from output.
Returns
-------
Dict of name:contents of string at given location.
"""
out = {}
start = 0
for name, length in parts:
out[name] = s[start : start + length].strip()
start += length
del out["_"]
return out
def _handle_truncated_float_vec(vec, nbytes):
# This feature is not well documented, but some SAS XPORT files
# have 2-7 byte "truncated" floats. To read these truncated
# floats, pad them with zeros on the right to make 8 byte floats.
#
# References:
# https://github.com/jcushman/xport/pull/3
# The R "foreign" library
if nbytes != 8:
vec1 = np.zeros(len(vec), np.dtype("S8"))
dtype = np.dtype(f"S{nbytes},S{8 - nbytes}")
vec2 = vec1.view(dtype=dtype)
vec2["f0"] = vec
return vec2
return vec
def _parse_float_vec(vec):
"""
Parse a vector of float values representing IBM 8 byte floats into
native 8 byte floats.
"""
dtype = np.dtype(">u4,>u4")
vec1 = vec.view(dtype=dtype)
xport1 = vec1["f0"]
xport2 = vec1["f1"]
# Start by setting first half of ieee number to first half of IBM
# number sans exponent
ieee1 = xport1 & 0x00FFFFFF
# The fraction bit to the left of the binary point in the ieee
# format was set and the number was shifted 0, 1, 2, or 3
# places. This will tell us how to adjust the ibm exponent to be a
# power of 2 ieee exponent and how to shift the fraction bits to
# restore the correct magnitude.
shift = np.zeros(len(vec), dtype=np.uint8)
shift[np.where(xport1 & 0x00200000)] = 1
shift[np.where(xport1 & 0x00400000)] = 2
shift[np.where(xport1 & 0x00800000)] = 3
# shift the ieee number down the correct number of places then
# set the second half of the ieee number to be the second half
# of the ibm number shifted appropriately, ored with the bits
# from the first half that would have been shifted in if we
# could shift a double. All we are worried about are the low
# order 3 bits of the first half since we're only shifting by
# 1, 2, or 3.
ieee1 >>= shift
ieee2 = (xport2 >> shift) | ((xport1 & 0x00000007) << (29 + (3 - shift)))
# clear the 1 bit to the left of the binary point
ieee1 &= 0xFFEFFFFF
# set the exponent of the ieee number to be the actual exponent
# plus the shift count + 1023. Or this into the first half of the
# ieee number. The ibm exponent is excess 64 but is adjusted by 65
# since during conversion to ibm format the exponent is
# incremented by 1 and the fraction bits left 4 positions to the
# right of the radix point. (had to add >> 24 because C treats &
# 0x7f as 0x7f000000 and Python doesn't)
ieee1 |= ((((((xport1 >> 24) & 0x7F) - 65) << 2) + shift + 1023) << 20) | (
xport1 & 0x80000000
)
ieee = np.empty((len(ieee1),), dtype=">u4,>u4")
ieee["f0"] = ieee1
ieee["f1"] = ieee2
ieee = ieee.view(dtype=">f8")
ieee = ieee.astype("f8")
return ieee
class XportReader(ReaderBase, abc.Iterator):
__doc__ = _xport_reader_doc
def __init__(
self,
filepath_or_buffer: FilePath | ReadBuffer[bytes],
index=None,
encoding: str | None = "ISO-8859-1",
chunksize=None,
compression: CompressionOptions = "infer",
) -> None:
self._encoding = encoding
self._lines_read = 0
self._index = index
self._chunksize = chunksize
self.handles = get_handle(
filepath_or_buffer,
"rb",
encoding=encoding,
is_text=False,
compression=compression,
)
self.filepath_or_buffer = self.handles.handle
try:
self._read_header()
except Exception:
self.close()
raise
def close(self) -> None:
self.handles.close()
def _get_row(self):
return self.filepath_or_buffer.read(80).decode()
def _read_header(self):
self.filepath_or_buffer.seek(0)
# read file header
line1 = self._get_row()
if line1 != _correct_line1:
if "**COMPRESSED**" in line1:
# this was created with the PROC CPORT method and can't be read
# https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/movefile/p1bm6aqp3fw4uin1hucwh718f6kp.htm
raise ValueError(
"Header record indicates a CPORT file, which is not readable."
)
raise ValueError("Header record is not an XPORT file.")
line2 = self._get_row()
fif = [["prefix", 24], ["version", 8], ["OS", 8], ["_", 24], ["created", 16]]
file_info = _split_line(line2, fif)
if file_info["prefix"] != "SAS SAS SASLIB":
raise ValueError("Header record has invalid prefix.")
file_info["created"] = _parse_date(file_info["created"])
self.file_info = file_info
line3 = self._get_row()
file_info["modified"] = _parse_date(line3[:16])
# read member header
header1 = self._get_row()
header2 = self._get_row()
headflag1 = header1.startswith(_correct_header1)
headflag2 = header2 == _correct_header2
if not (headflag1 and headflag2):
raise ValueError("Member header not found")
# usually 140, could be 135
fieldnamelength = int(header1[-5:-2])
# member info
mem = [
["prefix", 8],
["set_name", 8],
["sasdata", 8],
["version", 8],
["OS", 8],
["_", 24],
["created", 16],
]
member_info = _split_line(self._get_row(), mem)
mem = [["modified", 16], ["_", 16], ["label", 40], ["type", 8]]
member_info.update(_split_line(self._get_row(), mem))
member_info["modified"] = _parse_date(member_info["modified"])
member_info["created"] = _parse_date(member_info["created"])
self.member_info = member_info
# read field names
types = {1: "numeric", 2: "char"}
fieldcount = int(self._get_row()[54:58])
datalength = fieldnamelength * fieldcount
# round up to nearest 80
if datalength % 80:
datalength += 80 - datalength % 80
fielddata = self.filepath_or_buffer.read(datalength)
fields = []
obs_length = 0
while len(fielddata) >= fieldnamelength:
# pull data for one field
fieldbytes, fielddata = (
fielddata[:fieldnamelength],
fielddata[fieldnamelength:],
)
# rest at end gets ignored, so if field is short, pad out
# to match struct pattern below
fieldbytes = fieldbytes.ljust(140)
fieldstruct = struct.unpack(">hhhh8s40s8shhh2s8shhl52s", fieldbytes)
field = dict(zip(_fieldkeys, fieldstruct))
del field["_"]
field["ntype"] = types[field["ntype"]]
fl = field["field_length"]
if field["ntype"] == "numeric" and ((fl < 2) or (fl > 8)):
msg = f"Floating field width {fl} is not between 2 and 8."
raise TypeError(msg)
for k, v in field.items():
try:
field[k] = v.strip()
except AttributeError:
pass
obs_length += field["field_length"]
fields += [field]
header = self._get_row()
if not header == _correct_obs_header:
raise ValueError("Observation header not found.")
self.fields = fields
self.record_length = obs_length
self.record_start = self.filepath_or_buffer.tell()
self.nobs = self._record_count()
self.columns = [x["name"].decode() for x in self.fields]
# Setup the dtype.
dtypel = [
("s" + str(i), "S" + str(field["field_length"]))
for i, field in enumerate(self.fields)
]
dtype = np.dtype(dtypel)
self._dtype = dtype
def __next__(self) -> pd.DataFrame:
return self.read(nrows=self._chunksize or 1)
def _record_count(self) -> int:
"""
Get number of records in file.
This is maybe suboptimal because we have to seek to the end of
the file.
Side effect: returns file position to record_start.
"""
self.filepath_or_buffer.seek(0, 2)
total_records_length = self.filepath_or_buffer.tell() - self.record_start
if total_records_length % 80 != 0:
warnings.warn(
"xport file may be corrupted.",
stacklevel=find_stack_level(),
)
if self.record_length > 80:
self.filepath_or_buffer.seek(self.record_start)
return total_records_length // self.record_length
self.filepath_or_buffer.seek(-80, 2)
last_card_bytes = self.filepath_or_buffer.read(80)
last_card = np.frombuffer(last_card_bytes, dtype=np.uint64)
# 8 byte blank
ix = np.flatnonzero(last_card == 2314885530818453536)
if len(ix) == 0:
tail_pad = 0
else:
tail_pad = 8 * len(ix)
self.filepath_or_buffer.seek(self.record_start)
return (total_records_length - tail_pad) // self.record_length
def get_chunk(self, size=None) -> pd.DataFrame:
"""
Reads lines from Xport file and returns as dataframe
Parameters
----------
size : int, defaults to None
Number of lines to read. If None, reads whole file.
Returns
-------
DataFrame
"""
if size is None:
size = self._chunksize
return self.read(nrows=size)
def _missing_double(self, vec):
v = vec.view(dtype="u1,u1,u2,u4")
miss = (v["f1"] == 0) & (v["f2"] == 0) & (v["f3"] == 0)
miss1 = (
((v["f0"] >= 0x41) & (v["f0"] <= 0x5A))
| (v["f0"] == 0x5F)
| (v["f0"] == 0x2E)
)
miss &= miss1
return miss
@Appender(_read_method_doc)
def read(self, nrows: int | None = None) -> pd.DataFrame:
if nrows is None:
nrows = self.nobs
read_lines = min(nrows, self.nobs - self._lines_read)
read_len = read_lines * self.record_length
if read_len <= 0:
self.close()
raise StopIteration
raw = self.filepath_or_buffer.read(read_len)
data = np.frombuffer(raw, dtype=self._dtype, count=read_lines)
df = pd.DataFrame(index=range(read_lines))
for j, x in enumerate(self.columns):
vec = data["s" + str(j)]
ntype = self.fields[j]["ntype"]
if ntype == "numeric":
vec = _handle_truncated_float_vec(vec, self.fields[j]["field_length"])
miss = self._missing_double(vec)
v = _parse_float_vec(vec)
v[miss] = np.nan
elif self.fields[j]["ntype"] == "char":
v = [y.rstrip() for y in vec]
if self._encoding is not None:
v = [y.decode(self._encoding) for y in v]
df[x] = v
if self._index is None:
df.index = pd.Index(range(self._lines_read, self._lines_read + read_lines))
else:
df = df.set_index(self._index)
self._lines_read += read_lines
return df