ai-content-maker/.venv/Lib/site-packages/pandas/tests/extension/test_categorical.py

311 lines
9.3 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""
This file contains a minimal set of tests for compliance with the extension
array interface test suite, and should contain no other tests.
The test suite for the full functionality of the array is located in
`pandas/tests/arrays/`.
The tests in this file are inherited from the BaseExtensionTests, and only
minimal tweaks should be applied to get the tests passing (by overwriting a
parent method).
Additional tests should either be added to one of the BaseExtensionTests
classes (if they are relevant for the extension interface for all dtypes), or
be added to the array-specific tests in `pandas/tests/arrays/`.
"""
import string
import numpy as np
import pytest
import pandas as pd
from pandas import (
Categorical,
CategoricalIndex,
Timestamp,
)
import pandas._testing as tm
from pandas.api.types import CategoricalDtype
from pandas.tests.extension import base
def make_data():
while True:
values = np.random.choice(list(string.ascii_letters), size=100)
# ensure we meet the requirements
# 1. first two not null
# 2. first and second are different
if values[0] != values[1]:
break
return values
@pytest.fixture
def dtype():
return CategoricalDtype()
@pytest.fixture
def data():
"""Length-100 array for this type.
* data[0] and data[1] should both be non missing
* data[0] and data[1] should not be equal
"""
return Categorical(make_data())
@pytest.fixture
def data_missing():
"""Length 2 array with [NA, Valid]"""
return Categorical([np.nan, "A"])
@pytest.fixture
def data_for_sorting():
return Categorical(["A", "B", "C"], categories=["C", "A", "B"], ordered=True)
@pytest.fixture
def data_missing_for_sorting():
return Categorical(["A", None, "B"], categories=["B", "A"], ordered=True)
@pytest.fixture
def na_value():
return np.nan
@pytest.fixture
def data_for_grouping():
return Categorical(["a", "a", None, None, "b", "b", "a", "c"])
class TestDtype(base.BaseDtypeTests):
pass
class TestInterface(base.BaseInterfaceTests):
@pytest.mark.xfail(reason="Memory usage doesn't match")
def test_memory_usage(self, data):
# Is this deliberate?
super().test_memory_usage(data)
def test_contains(self, data, data_missing):
# GH-37867
# na value handling in Categorical.__contains__ is deprecated.
# See base.BaseInterFaceTests.test_contains for more details.
na_value = data.dtype.na_value
# ensure data without missing values
data = data[~data.isna()]
# first elements are non-missing
assert data[0] in data
assert data_missing[0] in data_missing
# check the presence of na_value
assert na_value in data_missing
assert na_value not in data
# Categoricals can contain other nan-likes than na_value
for na_value_obj in tm.NULL_OBJECTS:
if na_value_obj is na_value:
continue
assert na_value_obj not in data
assert na_value_obj in data_missing # this line differs from super method
class TestConstructors(base.BaseConstructorsTests):
def test_empty(self, dtype):
cls = dtype.construct_array_type()
result = cls._empty((4,), dtype=dtype)
assert isinstance(result, cls)
# the dtype we passed is not initialized, so will not match the
# dtype on our result.
assert result.dtype == CategoricalDtype([])
class TestReshaping(base.BaseReshapingTests):
pass
class TestGetitem(base.BaseGetitemTests):
@pytest.mark.skip(reason="Backwards compatibility")
def test_getitem_scalar(self, data):
# CategoricalDtype.type isn't "correct" since it should
# be a parent of the elements (object). But don't want
# to break things by changing.
super().test_getitem_scalar(data)
class TestSetitem(base.BaseSetitemTests):
pass
class TestIndex(base.BaseIndexTests):
pass
class TestMissing(base.BaseMissingTests):
pass
class TestReduce(base.BaseNoReduceTests):
pass
class TestMethods(base.BaseMethodsTests):
@pytest.mark.xfail(reason="Unobserved categories included")
def test_value_counts(self, all_data, dropna):
return super().test_value_counts(all_data, dropna)
def test_combine_add(self, data_repeated):
# GH 20825
# When adding categoricals in combine, result is a string
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
result = s1.combine(s2, lambda x1, x2: x1 + x2)
expected = pd.Series(
[a + b for (a, b) in zip(list(orig_data1), list(orig_data2))]
)
self.assert_series_equal(result, expected)
val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 + x2)
expected = pd.Series([a + val for a in list(orig_data1)])
self.assert_series_equal(result, expected)
class TestCasting(base.BaseCastingTests):
@pytest.mark.parametrize("cls", [Categorical, CategoricalIndex])
@pytest.mark.parametrize("values", [[1, np.nan], [Timestamp("2000"), pd.NaT]])
def test_cast_nan_to_int(self, cls, values):
# GH 28406
s = cls(values)
msg = "Cannot (cast|convert)"
with pytest.raises((ValueError, TypeError), match=msg):
s.astype(int)
@pytest.mark.parametrize(
"expected",
[
pd.Series(["2019", "2020"], dtype="datetime64[ns, UTC]"),
pd.Series([0, 0], dtype="timedelta64[ns]"),
pd.Series([pd.Period("2019"), pd.Period("2020")], dtype="period[A-DEC]"),
pd.Series([pd.Interval(0, 1), pd.Interval(1, 2)], dtype="interval"),
pd.Series([1, np.nan], dtype="Int64"),
],
)
def test_cast_category_to_extension_dtype(self, expected):
# GH 28668
result = expected.astype("category").astype(expected.dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"dtype, expected",
[
(
"datetime64[ns]",
np.array(["2015-01-01T00:00:00.000000000"], dtype="datetime64[ns]"),
),
(
"datetime64[ns, MET]",
pd.DatetimeIndex(
[Timestamp("2015-01-01 00:00:00+0100", tz="MET")]
).array,
),
],
)
def test_consistent_casting(self, dtype, expected):
# GH 28448
result = Categorical(["2015-01-01"]).astype(dtype)
assert result == expected
class TestArithmeticOps(base.BaseArithmeticOpsTests):
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request):
# frame & scalar
op_name = all_arithmetic_operators
if op_name == "__rmod__":
request.node.add_marker(
pytest.mark.xfail(
reason="rmod never called when string is first argument"
)
)
super().test_arith_frame_with_scalar(data, op_name)
def test_arith_series_with_scalar(self, data, all_arithmetic_operators, request):
op_name = all_arithmetic_operators
if op_name == "__rmod__":
request.node.add_marker(
pytest.mark.xfail(
reason="rmod never called when string is first argument"
)
)
super().test_arith_series_with_scalar(data, op_name)
def test_add_series_with_extension_array(self, data):
ser = pd.Series(data)
with pytest.raises(TypeError, match="cannot perform|unsupported operand"):
ser + data
def test_divmod_series_array(self):
# GH 23287
# skipping because it is not implemented
pass
def _check_divmod_op(self, s, op, other, exc=NotImplementedError):
return super()._check_divmod_op(s, op, other, exc=TypeError)
class TestComparisonOps(base.BaseComparisonOpsTests):
def _compare_other(self, s, data, op, other):
op_name = f"__{op.__name__}__"
if op_name == "__eq__":
result = op(s, other)
expected = s.combine(other, lambda x, y: x == y)
assert (result == expected).all()
elif op_name == "__ne__":
result = op(s, other)
expected = s.combine(other, lambda x, y: x != y)
assert (result == expected).all()
else:
msg = "Unordered Categoricals can only compare equality or not"
with pytest.raises(TypeError, match=msg):
op(data, other)
@pytest.mark.parametrize(
"categories",
[["a", "b"], [0, 1], [Timestamp("2019"), Timestamp("2020")]],
)
def test_not_equal_with_na(self, categories):
# https://github.com/pandas-dev/pandas/issues/32276
c1 = Categorical.from_codes([-1, 0], categories=categories)
c2 = Categorical.from_codes([0, 1], categories=categories)
result = c1 != c2
assert result.all()
class TestParsing(base.BaseParsingTests):
pass
class Test2DCompat(base.NDArrayBacked2DTests):
def test_repr_2d(self, data):
# Categorical __repr__ doesn't include "Categorical", so we need
# to special-case
res = repr(data.reshape(1, -1))
assert res.count("\nCategories") == 1
res = repr(data.reshape(-1, 1))
assert res.count("\nCategories") == 1