ai-content-maker/.venv/Lib/site-packages/pandas/tests/frame/methods/test_describe.py

412 lines
14 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
import pytest
import pandas as pd
from pandas import (
Categorical,
DataFrame,
Series,
Timestamp,
date_range,
)
import pandas._testing as tm
class TestDataFrameDescribe:
def test_describe_bool_in_mixed_frame(self):
df = DataFrame(
{
"string_data": ["a", "b", "c", "d", "e"],
"bool_data": [True, True, False, False, False],
"int_data": [10, 20, 30, 40, 50],
}
)
# Integer data are included in .describe() output,
# Boolean and string data are not.
result = df.describe()
expected = DataFrame(
{"int_data": [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]},
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
)
tm.assert_frame_equal(result, expected)
# Top value is a boolean value that is False
result = df.describe(include=["bool"])
expected = DataFrame(
{"bool_data": [5, 2, False, 3]}, index=["count", "unique", "top", "freq"]
)
tm.assert_frame_equal(result, expected)
def test_describe_empty_object(self):
# GH#27183
df = DataFrame({"A": [None, None]}, dtype=object)
result = df.describe()
expected = DataFrame(
{"A": [0, 0, np.nan, np.nan]},
dtype=object,
index=["count", "unique", "top", "freq"],
)
tm.assert_frame_equal(result, expected)
result = df.iloc[:0].describe()
tm.assert_frame_equal(result, expected)
def test_describe_bool_frame(self):
# GH#13891
df = DataFrame(
{
"bool_data_1": [False, False, True, True],
"bool_data_2": [False, True, True, True],
}
)
result = df.describe()
expected = DataFrame(
{"bool_data_1": [4, 2, False, 2], "bool_data_2": [4, 2, True, 3]},
index=["count", "unique", "top", "freq"],
)
tm.assert_frame_equal(result, expected)
df = DataFrame(
{
"bool_data": [False, False, True, True, False],
"int_data": [0, 1, 2, 3, 4],
}
)
result = df.describe()
expected = DataFrame(
{"int_data": [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]},
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
)
tm.assert_frame_equal(result, expected)
df = DataFrame(
{"bool_data": [False, False, True, True], "str_data": ["a", "b", "c", "a"]}
)
result = df.describe()
expected = DataFrame(
{"bool_data": [4, 2, False, 2], "str_data": [4, 3, "a", 2]},
index=["count", "unique", "top", "freq"],
)
tm.assert_frame_equal(result, expected)
def test_describe_categorical(self):
df = DataFrame({"value": np.random.randint(0, 10000, 100)})
labels = [f"{i} - {i + 499}" for i in range(0, 10000, 500)]
cat_labels = Categorical(labels, labels)
df = df.sort_values(by=["value"], ascending=True)
df["value_group"] = pd.cut(
df.value, range(0, 10500, 500), right=False, labels=cat_labels
)
cat = df
# Categoricals should not show up together with numerical columns
result = cat.describe()
assert len(result.columns) == 1
# In a frame, describe() for the cat should be the same as for string
# arrays (count, unique, top, freq)
cat = Categorical(
["a", "b", "b", "b"], categories=["a", "b", "c"], ordered=True
)
s = Series(cat)
result = s.describe()
expected = Series([4, 2, "b", 3], index=["count", "unique", "top", "freq"])
tm.assert_series_equal(result, expected)
cat = Series(Categorical(["a", "b", "c", "c"]))
df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]})
result = df3.describe()
tm.assert_numpy_array_equal(result["cat"].values, result["s"].values)
def test_describe_empty_categorical_column(self):
# GH#26397
# Ensure the index of an empty categorical DataFrame column
# also contains (count, unique, top, freq)
df = DataFrame({"empty_col": Categorical([])})
result = df.describe()
expected = DataFrame(
{"empty_col": [0, 0, np.nan, np.nan]},
index=["count", "unique", "top", "freq"],
dtype="object",
)
tm.assert_frame_equal(result, expected)
# ensure NaN, not None
assert np.isnan(result.iloc[2, 0])
assert np.isnan(result.iloc[3, 0])
def test_describe_categorical_columns(self):
# GH#11558
columns = pd.CategoricalIndex(["int1", "int2", "obj"], ordered=True, name="XXX")
df = DataFrame(
{
"int1": [10, 20, 30, 40, 50],
"int2": [10, 20, 30, 40, 50],
"obj": ["A", 0, None, "X", 1],
},
columns=columns,
)
result = df.describe()
exp_columns = pd.CategoricalIndex(
["int1", "int2"],
categories=["int1", "int2", "obj"],
ordered=True,
name="XXX",
)
expected = DataFrame(
{
"int1": [5, 30, df.int1.std(), 10, 20, 30, 40, 50],
"int2": [5, 30, df.int2.std(), 10, 20, 30, 40, 50],
},
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
columns=exp_columns,
)
tm.assert_frame_equal(result, expected)
tm.assert_categorical_equal(result.columns.values, expected.columns.values)
def test_describe_datetime_columns(self):
columns = pd.DatetimeIndex(
["2011-01-01", "2011-02-01", "2011-03-01"],
freq="MS",
tz="US/Eastern",
name="XXX",
)
df = DataFrame(
{
0: [10, 20, 30, 40, 50],
1: [10, 20, 30, 40, 50],
2: ["A", 0, None, "X", 1],
}
)
df.columns = columns
result = df.describe()
exp_columns = pd.DatetimeIndex(
["2011-01-01", "2011-02-01"], freq="MS", tz="US/Eastern", name="XXX"
)
expected = DataFrame(
{
0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50],
1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50],
},
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
)
expected.columns = exp_columns
tm.assert_frame_equal(result, expected)
assert result.columns.freq == "MS"
assert result.columns.tz == expected.columns.tz
def test_describe_timedelta_values(self):
# GH#6145
t1 = pd.timedelta_range("1 days", freq="D", periods=5)
t2 = pd.timedelta_range("1 hours", freq="H", periods=5)
df = DataFrame({"t1": t1, "t2": t2})
expected = DataFrame(
{
"t1": [
5,
pd.Timedelta("3 days"),
df.iloc[:, 0].std(),
pd.Timedelta("1 days"),
pd.Timedelta("2 days"),
pd.Timedelta("3 days"),
pd.Timedelta("4 days"),
pd.Timedelta("5 days"),
],
"t2": [
5,
pd.Timedelta("3 hours"),
df.iloc[:, 1].std(),
pd.Timedelta("1 hours"),
pd.Timedelta("2 hours"),
pd.Timedelta("3 hours"),
pd.Timedelta("4 hours"),
pd.Timedelta("5 hours"),
],
},
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
)
result = df.describe()
tm.assert_frame_equal(result, expected)
exp_repr = (
" t1 t2\n"
"count 5 5\n"
"mean 3 days 00:00:00 0 days 03:00:00\n"
"std 1 days 13:56:50.394919273 0 days 01:34:52.099788303\n"
"min 1 days 00:00:00 0 days 01:00:00\n"
"25% 2 days 00:00:00 0 days 02:00:00\n"
"50% 3 days 00:00:00 0 days 03:00:00\n"
"75% 4 days 00:00:00 0 days 04:00:00\n"
"max 5 days 00:00:00 0 days 05:00:00"
)
assert repr(result) == exp_repr
def test_describe_tz_values(self, tz_naive_fixture):
# GH#21332
tz = tz_naive_fixture
s1 = Series(range(5))
start = Timestamp(2018, 1, 1)
end = Timestamp(2018, 1, 5)
s2 = Series(date_range(start, end, tz=tz))
df = DataFrame({"s1": s1, "s2": s2})
expected = DataFrame(
{
"s1": [5, 2, 0, 1, 2, 3, 4, 1.581139],
"s2": [
5,
Timestamp(2018, 1, 3).tz_localize(tz),
start.tz_localize(tz),
s2[1],
s2[2],
s2[3],
end.tz_localize(tz),
np.nan,
],
},
index=["count", "mean", "min", "25%", "50%", "75%", "max", "std"],
)
result = df.describe(include="all", datetime_is_numeric=True)
tm.assert_frame_equal(result, expected)
def test_datetime_is_numeric_includes_datetime(self):
df = DataFrame({"a": date_range("2012", periods=3), "b": [1, 2, 3]})
result = df.describe(datetime_is_numeric=True)
expected = DataFrame(
{
"a": [
3,
Timestamp("2012-01-02"),
Timestamp("2012-01-01"),
Timestamp("2012-01-01T12:00:00"),
Timestamp("2012-01-02"),
Timestamp("2012-01-02T12:00:00"),
Timestamp("2012-01-03"),
np.nan,
],
"b": [3, 2, 1, 1.5, 2, 2.5, 3, 1],
},
index=["count", "mean", "min", "25%", "50%", "75%", "max", "std"],
)
tm.assert_frame_equal(result, expected)
def test_describe_tz_values2(self):
tz = "CET"
s1 = Series(range(5))
start = Timestamp(2018, 1, 1)
end = Timestamp(2018, 1, 5)
s2 = Series(date_range(start, end, tz=tz))
df = DataFrame({"s1": s1, "s2": s2})
s1_ = s1.describe()
s2_ = Series(
[
5,
5,
s2.value_counts().index[0],
1,
start.tz_localize(tz),
end.tz_localize(tz),
],
index=["count", "unique", "top", "freq", "first", "last"],
)
idx = [
"count",
"unique",
"top",
"freq",
"first",
"last",
"mean",
"std",
"min",
"25%",
"50%",
"75%",
"max",
]
expected = pd.concat([s1_, s2_], axis=1, keys=["s1", "s2"]).loc[idx]
with tm.assert_produces_warning(FutureWarning):
result = df.describe(include="all")
tm.assert_frame_equal(result, expected)
def test_describe_percentiles_integer_idx(self):
# GH#26660
df = DataFrame({"x": [1]})
pct = np.linspace(0, 1, 10 + 1)
result = df.describe(percentiles=pct)
expected = DataFrame(
{"x": [1.0, 1.0, np.NaN, 1.0, *(1.0 for _ in pct), 1.0]},
index=[
"count",
"mean",
"std",
"min",
"0%",
"10%",
"20%",
"30%",
"40%",
"50%",
"60%",
"70%",
"80%",
"90%",
"100%",
"max",
],
)
tm.assert_frame_equal(result, expected)
def test_describe_does_not_raise_error_for_dictlike_elements(self):
# GH#32409
df = DataFrame([{"test": {"a": "1"}}, {"test": {"a": "2"}}])
expected = DataFrame(
{"test": [2, 2, {"a": "1"}, 1]}, index=["count", "unique", "top", "freq"]
)
result = df.describe()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("exclude", ["x", "y", ["x", "y"], ["x", "z"]])
def test_describe_when_include_all_exclude_not_allowed(self, exclude):
"""
When include is 'all', then setting exclude != None is not allowed.
"""
df = DataFrame({"x": [1], "y": [2], "z": [3]})
msg = "exclude must be None when include is 'all'"
with pytest.raises(ValueError, match=msg):
df.describe(include="all", exclude=exclude)
def test_describe_with_duplicate_columns(self):
df = DataFrame(
[[1, 1, 1], [2, 2, 2], [3, 3, 3]],
columns=["bar", "a", "a"],
dtype="float64",
)
result = df.describe()
ser = df.iloc[:, 0].describe()
expected = pd.concat([ser, ser, ser], keys=df.columns, axis=1)
tm.assert_frame_equal(result, expected)
def test_ea_with_na(self, any_numeric_ea_dtype):
# GH#48778
df = DataFrame({"a": [1, pd.NA, pd.NA], "b": pd.NA}, dtype=any_numeric_ea_dtype)
result = df.describe()
expected = DataFrame(
{"a": [1.0, 1.0, pd.NA] + [1.0] * 5, "b": [0.0] + [pd.NA] * 7},
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
dtype="Float64",
)
tm.assert_frame_equal(result, expected)