ai-content-maker/.venv/Lib/site-packages/pandas/tests/frame/methods/test_round.py

219 lines
7.6 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
date_range,
)
import pandas._testing as tm
class TestDataFrameRound:
def test_round(self):
# GH#2665
# Test that rounding an empty DataFrame does nothing
df = DataFrame()
tm.assert_frame_equal(df, df.round())
# Here's the test frame we'll be working with
df = DataFrame({"col1": [1.123, 2.123, 3.123], "col2": [1.234, 2.234, 3.234]})
# Default round to integer (i.e. decimals=0)
expected_rounded = DataFrame({"col1": [1.0, 2.0, 3.0], "col2": [1.0, 2.0, 3.0]})
tm.assert_frame_equal(df.round(), expected_rounded)
# Round with an integer
decimals = 2
expected_rounded = DataFrame(
{"col1": [1.12, 2.12, 3.12], "col2": [1.23, 2.23, 3.23]}
)
tm.assert_frame_equal(df.round(decimals), expected_rounded)
# This should also work with np.round (since np.round dispatches to
# df.round)
tm.assert_frame_equal(np.round(df, decimals), expected_rounded)
# Round with a list
round_list = [1, 2]
msg = "decimals must be an integer, a dict-like or a Series"
with pytest.raises(TypeError, match=msg):
df.round(round_list)
# Round with a dictionary
expected_rounded = DataFrame(
{"col1": [1.1, 2.1, 3.1], "col2": [1.23, 2.23, 3.23]}
)
round_dict = {"col1": 1, "col2": 2}
tm.assert_frame_equal(df.round(round_dict), expected_rounded)
# Incomplete dict
expected_partially_rounded = DataFrame(
{"col1": [1.123, 2.123, 3.123], "col2": [1.2, 2.2, 3.2]}
)
partial_round_dict = {"col2": 1}
tm.assert_frame_equal(df.round(partial_round_dict), expected_partially_rounded)
# Dict with unknown elements
wrong_round_dict = {"col3": 2, "col2": 1}
tm.assert_frame_equal(df.round(wrong_round_dict), expected_partially_rounded)
# float input to `decimals`
non_int_round_dict = {"col1": 1, "col2": 0.5}
msg = "Values in decimals must be integers"
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_dict)
# String input
non_int_round_dict = {"col1": 1, "col2": "foo"}
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_dict)
non_int_round_Series = Series(non_int_round_dict)
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_Series)
# List input
non_int_round_dict = {"col1": 1, "col2": [1, 2]}
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_dict)
non_int_round_Series = Series(non_int_round_dict)
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_Series)
# Non integer Series inputs
non_int_round_Series = Series(non_int_round_dict)
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_Series)
non_int_round_Series = Series(non_int_round_dict)
with pytest.raises(TypeError, match=msg):
df.round(non_int_round_Series)
# Negative numbers
negative_round_dict = {"col1": -1, "col2": -2}
big_df = df * 100
expected_neg_rounded = DataFrame(
{"col1": [110.0, 210, 310], "col2": [100.0, 200, 300]}
)
tm.assert_frame_equal(big_df.round(negative_round_dict), expected_neg_rounded)
# nan in Series round
nan_round_Series = Series({"col1": np.nan, "col2": 1})
with pytest.raises(TypeError, match=msg):
df.round(nan_round_Series)
# Make sure this doesn't break existing Series.round
tm.assert_series_equal(df["col1"].round(1), expected_rounded["col1"])
# named columns
# GH#11986
decimals = 2
expected_rounded = DataFrame(
{"col1": [1.12, 2.12, 3.12], "col2": [1.23, 2.23, 3.23]}
)
df.columns.name = "cols"
expected_rounded.columns.name = "cols"
tm.assert_frame_equal(df.round(decimals), expected_rounded)
# interaction of named columns & series
tm.assert_series_equal(df["col1"].round(decimals), expected_rounded["col1"])
tm.assert_series_equal(df.round(decimals)["col1"], expected_rounded["col1"])
def test_round_numpy(self):
# GH#12600
df = DataFrame([[1.53, 1.36], [0.06, 7.01]])
out = np.round(df, decimals=0)
expected = DataFrame([[2.0, 1.0], [0.0, 7.0]])
tm.assert_frame_equal(out, expected)
msg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.round(df, decimals=0, out=df)
def test_round_numpy_with_nan(self):
# See GH#14197
df = Series([1.53, np.nan, 0.06]).to_frame()
with tm.assert_produces_warning(None):
result = df.round()
expected = Series([2.0, np.nan, 0.0]).to_frame()
tm.assert_frame_equal(result, expected)
def test_round_mixed_type(self):
# GH#11885
df = DataFrame(
{
"col1": [1.1, 2.2, 3.3, 4.4],
"col2": ["1", "a", "c", "f"],
"col3": date_range("20111111", periods=4),
}
)
round_0 = DataFrame(
{
"col1": [1.0, 2.0, 3.0, 4.0],
"col2": ["1", "a", "c", "f"],
"col3": date_range("20111111", periods=4),
}
)
tm.assert_frame_equal(df.round(), round_0)
tm.assert_frame_equal(df.round(1), df)
tm.assert_frame_equal(df.round({"col1": 1}), df)
tm.assert_frame_equal(df.round({"col1": 0}), round_0)
tm.assert_frame_equal(df.round({"col1": 0, "col2": 1}), round_0)
tm.assert_frame_equal(df.round({"col3": 1}), df)
def test_round_with_duplicate_columns(self):
# GH#11611
df = DataFrame(
np.random.random([3, 3]),
columns=["A", "B", "C"],
index=["first", "second", "third"],
)
dfs = pd.concat((df, df), axis=1)
rounded = dfs.round()
tm.assert_index_equal(rounded.index, dfs.index)
decimals = Series([1, 0, 2], index=["A", "B", "A"])
msg = "Index of decimals must be unique"
with pytest.raises(ValueError, match=msg):
df.round(decimals)
def test_round_builtin(self):
# GH#11763
# Here's the test frame we'll be working with
df = DataFrame({"col1": [1.123, 2.123, 3.123], "col2": [1.234, 2.234, 3.234]})
# Default round to integer (i.e. decimals=0)
expected_rounded = DataFrame({"col1": [1.0, 2.0, 3.0], "col2": [1.0, 2.0, 3.0]})
tm.assert_frame_equal(round(df), expected_rounded)
def test_round_nonunique_categorical(self):
# See GH#21809
idx = pd.CategoricalIndex(["low"] * 3 + ["hi"] * 3)
df = DataFrame(np.random.rand(6, 3), columns=list("abc"))
expected = df.round(3)
expected.index = idx
df_categorical = df.copy().set_index(idx)
assert df_categorical.shape == (6, 3)
result = df_categorical.round(3)
assert result.shape == (6, 3)
tm.assert_frame_equal(result, expected)
def test_round_interval_category_columns(self):
# GH#30063
columns = pd.CategoricalIndex(pd.interval_range(0, 2))
df = DataFrame([[0.66, 1.1], [0.3, 0.25]], columns=columns)
result = df.round()
expected = DataFrame([[1.0, 1.0], [0.0, 0.0]], columns=columns)
tm.assert_frame_equal(result, expected)