ai-content-maker/.venv/Lib/site-packages/pandas/tests/io/test_compression.py

343 lines
11 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import gzip
import io
import os
from pathlib import Path
import subprocess
import sys
import tarfile
import textwrap
import time
import zipfile
import pytest
from pandas.compat import is_platform_windows
import pandas as pd
import pandas._testing as tm
import pandas.io.common as icom
_compression_to_extension = {
value: key for key, value in icom._extension_to_compression.items()
}
@pytest.mark.parametrize(
"obj",
[
pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
),
pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
],
)
@pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
def test_compression_size(obj, method, compression_only):
if compression_only == "tar":
compression_only = {"method": "tar", "mode": "w:gz"}
with tm.ensure_clean() as path:
getattr(obj, method)(path, compression=compression_only)
compressed_size = os.path.getsize(path)
getattr(obj, method)(path, compression=None)
uncompressed_size = os.path.getsize(path)
assert uncompressed_size > compressed_size
@pytest.mark.parametrize(
"obj",
[
pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
),
pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
],
)
@pytest.mark.parametrize("method", ["to_csv", "to_json"])
def test_compression_size_fh(obj, method, compression_only):
with tm.ensure_clean() as path:
with icom.get_handle(
path,
"w:gz" if compression_only == "tar" else "w",
compression=compression_only,
) as handles:
getattr(obj, method)(handles.handle)
assert not handles.handle.closed
compressed_size = os.path.getsize(path)
with tm.ensure_clean() as path:
with icom.get_handle(path, "w", compression=None) as handles:
getattr(obj, method)(handles.handle)
assert not handles.handle.closed
uncompressed_size = os.path.getsize(path)
assert uncompressed_size > compressed_size
@pytest.mark.parametrize(
"write_method, write_kwargs, read_method",
[
("to_csv", {"index": False}, pd.read_csv),
("to_json", {}, pd.read_json),
("to_pickle", {}, pd.read_pickle),
],
)
def test_dataframe_compression_defaults_to_infer(
write_method, write_kwargs, read_method, compression_only
):
# GH22004
input = pd.DataFrame([[1.0, 0, -4], [3.4, 5, 2]], columns=["X", "Y", "Z"])
extension = _compression_to_extension[compression_only]
with tm.ensure_clean("compressed" + extension) as path:
getattr(input, write_method)(path, **write_kwargs)
output = read_method(path, compression=compression_only)
tm.assert_frame_equal(output, input)
@pytest.mark.parametrize(
"write_method,write_kwargs,read_method,read_kwargs",
[
("to_csv", {"index": False, "header": True}, pd.read_csv, {"squeeze": True}),
("to_json", {}, pd.read_json, {"typ": "series"}),
("to_pickle", {}, pd.read_pickle, {}),
],
)
def test_series_compression_defaults_to_infer(
write_method, write_kwargs, read_method, read_kwargs, compression_only
):
# GH22004
input = pd.Series([0, 5, -2, 10], name="X")
extension = _compression_to_extension[compression_only]
with tm.ensure_clean("compressed" + extension) as path:
getattr(input, write_method)(path, **write_kwargs)
if "squeeze" in read_kwargs:
kwargs = read_kwargs.copy()
del kwargs["squeeze"]
output = read_method(path, compression=compression_only, **kwargs).squeeze(
"columns"
)
else:
output = read_method(path, compression=compression_only, **read_kwargs)
tm.assert_series_equal(output, input, check_names=False)
def test_compression_warning(compression_only):
# Assert that passing a file object to to_csv while explicitly specifying a
# compression protocol triggers a RuntimeWarning, as per GH21227.
df = pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
)
with tm.ensure_clean() as path:
with icom.get_handle(path, "w", compression=compression_only) as handles:
with tm.assert_produces_warning(RuntimeWarning):
df.to_csv(handles.handle, compression=compression_only)
def test_compression_binary(compression_only):
"""
Binary file handles support compression.
GH22555
"""
df = tm.makeDataFrame()
# with a file
with tm.ensure_clean() as path:
with open(path, mode="wb") as file:
df.to_csv(file, mode="wb", compression=compression_only)
file.seek(0) # file shouldn't be closed
tm.assert_frame_equal(
df, pd.read_csv(path, index_col=0, compression=compression_only)
)
# with BytesIO
file = io.BytesIO()
df.to_csv(file, mode="wb", compression=compression_only)
file.seek(0) # file shouldn't be closed
tm.assert_frame_equal(
df, pd.read_csv(file, index_col=0, compression=compression_only)
)
def test_gzip_reproducibility_file_name():
"""
Gzip should create reproducible archives with mtime.
Note: Archives created with different filenames will still be different!
GH 28103
"""
df = tm.makeDataFrame()
compression_options = {"method": "gzip", "mtime": 1}
# test for filename
with tm.ensure_clean() as path:
path = Path(path)
df.to_csv(path, compression=compression_options)
time.sleep(2)
output = path.read_bytes()
df.to_csv(path, compression=compression_options)
assert output == path.read_bytes()
def test_gzip_reproducibility_file_object():
"""
Gzip should create reproducible archives with mtime.
GH 28103
"""
df = tm.makeDataFrame()
compression_options = {"method": "gzip", "mtime": 1}
# test for file object
buffer = io.BytesIO()
df.to_csv(buffer, compression=compression_options, mode="wb")
output = buffer.getvalue()
time.sleep(2)
buffer = io.BytesIO()
df.to_csv(buffer, compression=compression_options, mode="wb")
assert output == buffer.getvalue()
def test_with_missing_lzma():
"""Tests if import pandas works when lzma is not present."""
# https://github.com/pandas-dev/pandas/issues/27575
code = textwrap.dedent(
"""\
import sys
sys.modules['lzma'] = None
import pandas
"""
)
subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE)
def test_with_missing_lzma_runtime():
"""Tests if RuntimeError is hit when calling lzma without
having the module available.
"""
code = textwrap.dedent(
"""
import sys
import pytest
sys.modules['lzma'] = None
import pandas as pd
df = pd.DataFrame()
with pytest.raises(RuntimeError, match='lzma module'):
df.to_csv('foo.csv', compression='xz')
"""
)
subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE)
@pytest.mark.parametrize(
"obj",
[
pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
),
pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
],
)
@pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
def test_gzip_compression_level(obj, method):
# GH33196
with tm.ensure_clean() as path:
getattr(obj, method)(path, compression="gzip")
compressed_size_default = os.path.getsize(path)
getattr(obj, method)(path, compression={"method": "gzip", "compresslevel": 1})
compressed_size_fast = os.path.getsize(path)
assert compressed_size_default < compressed_size_fast
@pytest.mark.parametrize(
"obj",
[
pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
),
pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
],
)
@pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
def test_bzip_compression_level(obj, method):
"""GH33196 bzip needs file size > 100k to show a size difference between
compression levels, so here we just check if the call works when
compression is passed as a dict.
"""
with tm.ensure_clean() as path:
getattr(obj, method)(path, compression={"method": "bz2", "compresslevel": 1})
@pytest.mark.parametrize(
"suffix,archive",
[
(".zip", zipfile.ZipFile),
(".tar", tarfile.TarFile),
],
)
def test_empty_archive_zip(suffix, archive):
with tm.ensure_clean(filename=suffix) as path:
file = archive(path, "w")
file.close()
with pytest.raises(ValueError, match="Zero files found"):
pd.read_csv(path)
def test_ambiguous_archive_zip():
with tm.ensure_clean(filename=".zip") as path:
file = zipfile.ZipFile(path, "w")
file.writestr("a.csv", "foo,bar")
file.writestr("b.csv", "foo,bar")
file.close()
with pytest.raises(ValueError, match="Multiple files found in ZIP file"):
pd.read_csv(path)
def test_ambiguous_archive_tar():
with tm.ensure_clean_dir() as dir:
csvAPath = os.path.join(dir, "a.csv")
with open(csvAPath, "w") as a:
a.write("foo,bar\n")
csvBPath = os.path.join(dir, "b.csv")
with open(csvBPath, "w") as b:
b.write("foo,bar\n")
tarpath = os.path.join(dir, "archive.tar")
with tarfile.TarFile(tarpath, "w") as tar:
tar.add(csvAPath, "a.csv")
tar.add(csvBPath, "b.csv")
with pytest.raises(ValueError, match="Multiple files found in TAR archive"):
pd.read_csv(tarpath)
def test_tar_gz_to_different_filename():
with tm.ensure_clean(filename=".foo") as file:
pd.DataFrame(
[["1", "2"]],
columns=["foo", "bar"],
).to_csv(file, compression={"method": "tar", "mode": "w:gz"}, index=False)
with gzip.open(file) as uncompressed:
with tarfile.TarFile(fileobj=uncompressed) as archive:
members = archive.getmembers()
assert len(members) == 1
content = archive.extractfile(members[0]).read().decode("utf8")
if is_platform_windows():
expected = "foo,bar\r\n1,2\r\n"
else:
expected = "foo,bar\n1,2\n"
assert content == expected
def test_tar_no_error_on_close():
with io.BytesIO() as buffer:
with icom._BytesTarFile(fileobj=buffer, mode="w"):
pass