ai-content-maker/.venv/Lib/site-packages/pandas/tests/reshape/concat/test_datetimes.py

544 lines
18 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import datetime as dt
from datetime import datetime
import dateutil
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Index,
MultiIndex,
Series,
Timestamp,
concat,
date_range,
to_timedelta,
)
import pandas._testing as tm
class TestDatetimeConcat:
def test_concat_datetime64_block(self):
from pandas.core.indexes.datetimes import date_range
rng = date_range("1/1/2000", periods=10)
df = DataFrame({"time": rng})
result = concat([df, df])
assert (result.iloc[:10]["time"] == rng).all()
assert (result.iloc[10:]["time"] == rng).all()
def test_concat_datetime_datetime64_frame(self):
# GH#2624
rows = []
rows.append([datetime(2010, 1, 1), 1])
rows.append([datetime(2010, 1, 2), "hi"])
df2_obj = DataFrame.from_records(rows, columns=["date", "test"])
ind = date_range(start="2000/1/1", freq="D", periods=10)
df1 = DataFrame({"date": ind, "test": range(10)})
# it works!
concat([df1, df2_obj])
def test_concat_datetime_timezone(self):
# GH 18523
idx1 = date_range("2011-01-01", periods=3, freq="H", tz="Europe/Paris")
idx2 = date_range(start=idx1[0], end=idx1[-1], freq="H")
df1 = DataFrame({"a": [1, 2, 3]}, index=idx1)
df2 = DataFrame({"b": [1, 2, 3]}, index=idx2)
result = concat([df1, df2], axis=1)
exp_idx = (
DatetimeIndex(
[
"2011-01-01 00:00:00+01:00",
"2011-01-01 01:00:00+01:00",
"2011-01-01 02:00:00+01:00",
],
freq="H",
)
.tz_convert("UTC")
.tz_convert("Europe/Paris")
)
expected = DataFrame(
[[1, 1], [2, 2], [3, 3]], index=exp_idx, columns=["a", "b"]
)
tm.assert_frame_equal(result, expected)
idx3 = date_range("2011-01-01", periods=3, freq="H", tz="Asia/Tokyo")
df3 = DataFrame({"b": [1, 2, 3]}, index=idx3)
result = concat([df1, df3], axis=1)
exp_idx = DatetimeIndex(
[
"2010-12-31 15:00:00+00:00",
"2010-12-31 16:00:00+00:00",
"2010-12-31 17:00:00+00:00",
"2010-12-31 23:00:00+00:00",
"2011-01-01 00:00:00+00:00",
"2011-01-01 01:00:00+00:00",
]
)
expected = DataFrame(
[
[np.nan, 1],
[np.nan, 2],
[np.nan, 3],
[1, np.nan],
[2, np.nan],
[3, np.nan],
],
index=exp_idx,
columns=["a", "b"],
)
tm.assert_frame_equal(result, expected)
# GH 13783: Concat after resample
result = concat([df1.resample("H").mean(), df2.resample("H").mean()], sort=True)
expected = DataFrame(
{"a": [1, 2, 3] + [np.nan] * 3, "b": [np.nan] * 3 + [1, 2, 3]},
index=idx1.append(idx1),
)
tm.assert_frame_equal(result, expected)
def test_concat_datetimeindex_freq(self):
# GH 3232
# Monotonic index result
dr = date_range("01-Jan-2013", periods=100, freq="50L", tz="UTC")
data = list(range(100))
expected = DataFrame(data, index=dr)
result = concat([expected[:50], expected[50:]])
tm.assert_frame_equal(result, expected)
# Non-monotonic index result
result = concat([expected[50:], expected[:50]])
expected = DataFrame(data[50:] + data[:50], index=dr[50:].append(dr[:50]))
expected.index._data.freq = None
tm.assert_frame_equal(result, expected)
def test_concat_multiindex_datetime_object_index(self):
# https://github.com/pandas-dev/pandas/issues/11058
idx = Index(
[dt.date(2013, 1, 1), dt.date(2014, 1, 1), dt.date(2015, 1, 1)],
dtype="object",
)
s = Series(
["a", "b"],
index=MultiIndex.from_arrays(
[
[1, 2],
idx[:-1],
],
names=["first", "second"],
),
)
s2 = Series(
["a", "b"],
index=MultiIndex.from_arrays(
[[1, 2], idx[::2]],
names=["first", "second"],
),
)
mi = MultiIndex.from_arrays(
[[1, 2, 2], idx],
names=["first", "second"],
)
assert mi.levels[1].dtype == object
expected = DataFrame(
[["a", "a"], ["b", np.nan], [np.nan, "b"]],
index=mi,
)
result = concat([s, s2], axis=1)
tm.assert_frame_equal(result, expected)
def test_concat_NaT_series(self):
# GH 11693
# test for merging NaT series with datetime series.
x = Series(
date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="US/Eastern")
)
y = Series(pd.NaT, index=[0, 1], dtype="datetime64[ns, US/Eastern]")
expected = Series([x[0], x[1], pd.NaT, pd.NaT])
result = concat([x, y], ignore_index=True)
tm.assert_series_equal(result, expected)
# all NaT with tz
expected = Series(pd.NaT, index=range(4), dtype="datetime64[ns, US/Eastern]")
result = concat([y, y], ignore_index=True)
tm.assert_series_equal(result, expected)
# without tz
x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h"))
y = Series(date_range("20151124 10:00", "20151124 11:00", freq="1h"))
y[:] = pd.NaT
expected = Series([x[0], x[1], pd.NaT, pd.NaT])
result = concat([x, y], ignore_index=True)
tm.assert_series_equal(result, expected)
# all NaT without tz
x[:] = pd.NaT
expected = Series(pd.NaT, index=range(4), dtype="datetime64[ns]")
result = concat([x, y], ignore_index=True)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("tz", [None, "UTC"])
def test_concat_NaT_dataframes(self, tz):
# GH 12396
first = DataFrame([[pd.NaT], [pd.NaT]])
first = first.apply(lambda x: x.dt.tz_localize(tz))
second = DataFrame(
[[Timestamp("2015/01/01", tz=tz)], [Timestamp("2016/01/01", tz=tz)]],
index=[2, 3],
)
expected = DataFrame(
[
pd.NaT,
pd.NaT,
Timestamp("2015/01/01", tz=tz),
Timestamp("2016/01/01", tz=tz),
]
)
result = concat([first, second], axis=0)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("tz1", [None, "UTC"])
@pytest.mark.parametrize("tz2", [None, "UTC"])
@pytest.mark.parametrize("s", [pd.NaT, Timestamp("20150101")])
def test_concat_NaT_dataframes_all_NaT_axis_0(self, tz1, tz2, s):
# GH 12396
# tz-naive
first = DataFrame([[pd.NaT], [pd.NaT]]).apply(lambda x: x.dt.tz_localize(tz1))
second = DataFrame([s]).apply(lambda x: x.dt.tz_localize(tz2))
result = concat([first, second], axis=0)
expected = DataFrame(Series([pd.NaT, pd.NaT, s], index=[0, 1, 0]))
expected = expected.apply(lambda x: x.dt.tz_localize(tz2))
if tz1 != tz2:
expected = expected.astype(object)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("tz1", [None, "UTC"])
@pytest.mark.parametrize("tz2", [None, "UTC"])
def test_concat_NaT_dataframes_all_NaT_axis_1(self, tz1, tz2):
# GH 12396
first = DataFrame(Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1))
second = DataFrame(Series([pd.NaT]).dt.tz_localize(tz2), columns=[1])
expected = DataFrame(
{
0: Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1),
1: Series([pd.NaT, pd.NaT]).dt.tz_localize(tz2),
}
)
result = concat([first, second], axis=1)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("tz1", [None, "UTC"])
@pytest.mark.parametrize("tz2", [None, "UTC"])
def test_concat_NaT_series_dataframe_all_NaT(self, tz1, tz2):
# GH 12396
# tz-naive
first = Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1)
second = DataFrame(
[
[Timestamp("2015/01/01", tz=tz2)],
[Timestamp("2016/01/01", tz=tz2)],
],
index=[2, 3],
)
expected = DataFrame(
[
pd.NaT,
pd.NaT,
Timestamp("2015/01/01", tz=tz2),
Timestamp("2016/01/01", tz=tz2),
]
)
if tz1 != tz2:
expected = expected.astype(object)
result = concat([first, second])
tm.assert_frame_equal(result, expected)
class TestTimezoneConcat:
def test_concat_tz_series(self):
# gh-11755: tz and no tz
x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="UTC"))
y = Series(date_range("2012-01-01", "2012-01-02"))
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
result = concat([x, y], ignore_index=True)
tm.assert_series_equal(result, expected)
# gh-11887: concat tz and object
x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="UTC"))
y = Series(["a", "b"])
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
result = concat([x, y], ignore_index=True)
tm.assert_series_equal(result, expected)
# see gh-12217 and gh-12306
# Concatenating two UTC times
first = DataFrame([[datetime(2016, 1, 1)]])
first[0] = first[0].dt.tz_localize("UTC")
second = DataFrame([[datetime(2016, 1, 2)]])
second[0] = second[0].dt.tz_localize("UTC")
result = concat([first, second])
assert result[0].dtype == "datetime64[ns, UTC]"
# Concatenating two London times
first = DataFrame([[datetime(2016, 1, 1)]])
first[0] = first[0].dt.tz_localize("Europe/London")
second = DataFrame([[datetime(2016, 1, 2)]])
second[0] = second[0].dt.tz_localize("Europe/London")
result = concat([first, second])
assert result[0].dtype == "datetime64[ns, Europe/London]"
# Concatenating 2+1 London times
first = DataFrame([[datetime(2016, 1, 1)], [datetime(2016, 1, 2)]])
first[0] = first[0].dt.tz_localize("Europe/London")
second = DataFrame([[datetime(2016, 1, 3)]])
second[0] = second[0].dt.tz_localize("Europe/London")
result = concat([first, second])
assert result[0].dtype == "datetime64[ns, Europe/London]"
# Concat'ing 1+2 London times
first = DataFrame([[datetime(2016, 1, 1)]])
first[0] = first[0].dt.tz_localize("Europe/London")
second = DataFrame([[datetime(2016, 1, 2)], [datetime(2016, 1, 3)]])
second[0] = second[0].dt.tz_localize("Europe/London")
result = concat([first, second])
assert result[0].dtype == "datetime64[ns, Europe/London]"
def test_concat_tz_series_tzlocal(self):
# see gh-13583
x = [
Timestamp("2011-01-01", tz=dateutil.tz.tzlocal()),
Timestamp("2011-02-01", tz=dateutil.tz.tzlocal()),
]
y = [
Timestamp("2012-01-01", tz=dateutil.tz.tzlocal()),
Timestamp("2012-02-01", tz=dateutil.tz.tzlocal()),
]
result = concat([Series(x), Series(y)], ignore_index=True)
tm.assert_series_equal(result, Series(x + y))
assert result.dtype == "datetime64[ns, tzlocal()]"
def test_concat_tz_series_with_datetimelike(self):
# see gh-12620: tz and timedelta
x = [
Timestamp("2011-01-01", tz="US/Eastern"),
Timestamp("2011-02-01", tz="US/Eastern"),
]
y = [pd.Timedelta("1 day"), pd.Timedelta("2 day")]
result = concat([Series(x), Series(y)], ignore_index=True)
tm.assert_series_equal(result, Series(x + y, dtype="object"))
# tz and period
y = [pd.Period("2011-03", freq="M"), pd.Period("2011-04", freq="M")]
result = concat([Series(x), Series(y)], ignore_index=True)
tm.assert_series_equal(result, Series(x + y, dtype="object"))
def test_concat_tz_frame(self):
df2 = DataFrame(
{
"A": Timestamp("20130102", tz="US/Eastern"),
"B": Timestamp("20130603", tz="CET"),
},
index=range(5),
)
# concat
df3 = concat([df2.A.to_frame(), df2.B.to_frame()], axis=1)
tm.assert_frame_equal(df2, df3)
def test_concat_multiple_tzs(self):
# GH#12467
# combining datetime tz-aware and naive DataFrames
ts1 = Timestamp("2015-01-01", tz=None)
ts2 = Timestamp("2015-01-01", tz="UTC")
ts3 = Timestamp("2015-01-01", tz="EST")
df1 = DataFrame({"time": [ts1]})
df2 = DataFrame({"time": [ts2]})
df3 = DataFrame({"time": [ts3]})
results = concat([df1, df2]).reset_index(drop=True)
expected = DataFrame({"time": [ts1, ts2]}, dtype=object)
tm.assert_frame_equal(results, expected)
results = concat([df1, df3]).reset_index(drop=True)
expected = DataFrame({"time": [ts1, ts3]}, dtype=object)
tm.assert_frame_equal(results, expected)
results = concat([df2, df3]).reset_index(drop=True)
expected = DataFrame({"time": [ts2, ts3]})
tm.assert_frame_equal(results, expected)
@pytest.mark.filterwarnings("ignore:Timestamp.freq is deprecated:FutureWarning")
def test_concat_multiindex_with_tz(self):
# GH 6606
df = DataFrame(
{
"dt": [
datetime(2014, 1, 1),
datetime(2014, 1, 2),
datetime(2014, 1, 3),
],
"b": ["A", "B", "C"],
"c": [1, 2, 3],
"d": [4, 5, 6],
}
)
df["dt"] = df["dt"].apply(lambda d: Timestamp(d, tz="US/Pacific"))
df = df.set_index(["dt", "b"])
exp_idx1 = DatetimeIndex(
["2014-01-01", "2014-01-02", "2014-01-03"] * 2, tz="US/Pacific", name="dt"
)
exp_idx2 = Index(["A", "B", "C"] * 2, name="b")
exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2])
expected = DataFrame(
{"c": [1, 2, 3] * 2, "d": [4, 5, 6] * 2}, index=exp_idx, columns=["c", "d"]
)
result = concat([df, df])
tm.assert_frame_equal(result, expected)
def test_concat_tz_not_aligned(self):
# GH#22796
ts = pd.to_datetime([1, 2]).tz_localize("UTC")
a = DataFrame({"A": ts})
b = DataFrame({"A": ts, "B": ts})
result = concat([a, b], sort=True, ignore_index=True)
expected = DataFrame(
{"A": list(ts) + list(ts), "B": [pd.NaT, pd.NaT] + list(ts)}
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"t1",
[
"2015-01-01",
pytest.param(
pd.NaT,
marks=pytest.mark.xfail(
reason="GH23037 incorrect dtype when concatenating"
),
),
],
)
def test_concat_tz_NaT(self, t1):
# GH#22796
# Concatenating tz-aware multicolumn DataFrames
ts1 = Timestamp(t1, tz="UTC")
ts2 = Timestamp("2015-01-01", tz="UTC")
ts3 = Timestamp("2015-01-01", tz="UTC")
df1 = DataFrame([[ts1, ts2]])
df2 = DataFrame([[ts3]])
result = concat([df1, df2])
expected = DataFrame([[ts1, ts2], [ts3, pd.NaT]], index=[0, 0])
tm.assert_frame_equal(result, expected)
def test_concat_tz_with_empty(self):
# GH 9188
result = concat(
[DataFrame(date_range("2000", periods=1, tz="UTC")), DataFrame()]
)
expected = DataFrame(date_range("2000", periods=1, tz="UTC"))
tm.assert_frame_equal(result, expected)
class TestPeriodConcat:
def test_concat_period_series(self):
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
y = Series(pd.PeriodIndex(["2015-10-01", "2016-01-01"], freq="D"))
expected = Series([x[0], x[1], y[0], y[1]], dtype="Period[D]")
result = concat([x, y], ignore_index=True)
tm.assert_series_equal(result, expected)
def test_concat_period_multiple_freq_series(self):
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
y = Series(pd.PeriodIndex(["2015-10-01", "2016-01-01"], freq="M"))
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
result = concat([x, y], ignore_index=True)
tm.assert_series_equal(result, expected)
assert result.dtype == "object"
def test_concat_period_other_series(self):
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
y = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="M"))
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
result = concat([x, y], ignore_index=True)
tm.assert_series_equal(result, expected)
assert result.dtype == "object"
# non-period
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
y = Series(DatetimeIndex(["2015-11-01", "2015-12-01"]))
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
result = concat([x, y], ignore_index=True)
tm.assert_series_equal(result, expected)
assert result.dtype == "object"
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
y = Series(["A", "B"])
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
result = concat([x, y], ignore_index=True)
tm.assert_series_equal(result, expected)
assert result.dtype == "object"
def test_concat_timedelta64_block():
rng = to_timedelta(np.arange(10), unit="s")
df = DataFrame({"time": rng})
result = concat([df, df])
tm.assert_frame_equal(result.iloc[:10], df)
tm.assert_frame_equal(result.iloc[10:], df)
def test_concat_multiindex_datetime_nat():
# GH#44900
left = DataFrame({"a": 1}, index=MultiIndex.from_tuples([(1, pd.NaT)]))
right = DataFrame(
{"b": 2}, index=MultiIndex.from_tuples([(1, pd.NaT), (2, pd.NaT)])
)
result = concat([left, right], axis="columns")
expected = DataFrame(
{"a": [1.0, np.nan], "b": 2}, MultiIndex.from_tuples([(1, pd.NaT), (2, pd.NaT)])
)
tm.assert_frame_equal(result, expected)