ai-content-maker/.venv/Lib/site-packages/pandas/tests/series/methods/test_count.py

99 lines
3.2 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
import pytest
import pandas as pd
from pandas import (
Categorical,
MultiIndex,
Series,
)
import pandas._testing as tm
class TestSeriesCount:
def test_count_level_series(self):
index = MultiIndex(
levels=[["foo", "bar", "baz"], ["one", "two", "three", "four"]],
codes=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]],
)
ser = Series(np.random.randn(len(index)), index=index)
with tm.assert_produces_warning(FutureWarning):
result = ser.count(level=0)
expected = ser.groupby(level=0).count()
tm.assert_series_equal(
result.astype("f8"), expected.reindex(result.index).fillna(0)
)
with tm.assert_produces_warning(FutureWarning):
result = ser.count(level=1)
expected = ser.groupby(level=1).count()
tm.assert_series_equal(
result.astype("f8"), expected.reindex(result.index).fillna(0)
)
def test_count_multiindex(self, series_with_multilevel_index):
ser = series_with_multilevel_index
series = ser.copy()
series.index.names = ["a", "b"]
with tm.assert_produces_warning(FutureWarning):
result = series.count(level="b")
with tm.assert_produces_warning(FutureWarning):
expect = ser.count(level=1).rename_axis("b")
tm.assert_series_equal(result, expect)
with tm.assert_produces_warning(FutureWarning):
result = series.count(level="a")
with tm.assert_produces_warning(FutureWarning):
expect = ser.count(level=0).rename_axis("a")
tm.assert_series_equal(result, expect)
msg = "Level x not found"
with pytest.raises(KeyError, match=msg):
with tm.assert_produces_warning(FutureWarning):
series.count("x")
def test_count_level_without_multiindex(self):
ser = Series(range(3))
msg = "Series.count level is only valid with a MultiIndex"
with pytest.raises(ValueError, match=msg):
with tm.assert_produces_warning(FutureWarning):
ser.count(level=1)
def test_count(self, datetime_series):
assert datetime_series.count() == len(datetime_series)
datetime_series[::2] = np.NaN
assert datetime_series.count() == np.isfinite(datetime_series).sum()
mi = MultiIndex.from_arrays([list("aabbcc"), [1, 2, 2, np.nan, 1, 2]])
ts = Series(np.arange(len(mi)), index=mi)
with tm.assert_produces_warning(FutureWarning):
left = ts.count(level=1)
right = Series([2, 3, 1], index=[1, 2, np.nan])
tm.assert_series_equal(left, right)
ts.iloc[[0, 3, 5]] = np.nan
with tm.assert_produces_warning(FutureWarning):
tm.assert_series_equal(ts.count(level=1), right - 1)
# GH#29478
with pd.option_context("use_inf_as_na", True):
assert Series([pd.Timestamp("1990/1/1")]).count() == 1
def test_count_categorical(self):
ser = Series(
Categorical(
[np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True
)
)
result = ser.count()
assert result == 2