ai-content-maker/.venv/Lib/site-packages/pandas/tests/series/test_api.py

306 lines
10 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import inspect
import pydoc
import numpy as np
import pytest
from pandas.util._test_decorators import skip_if_no
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
date_range,
)
import pandas._testing as tm
class TestSeriesMisc:
def test_tab_completion(self):
# GH 9910
s = Series(list("abcd"))
# Series of str values should have .str but not .dt/.cat in __dir__
assert "str" in dir(s)
assert "dt" not in dir(s)
assert "cat" not in dir(s)
def test_tab_completion_dt(self):
# similarly for .dt
s = Series(date_range("1/1/2015", periods=5))
assert "dt" in dir(s)
assert "str" not in dir(s)
assert "cat" not in dir(s)
def test_tab_completion_cat(self):
# Similarly for .cat, but with the twist that str and dt should be
# there if the categories are of that type first cat and str.
s = Series(list("abbcd"), dtype="category")
assert "cat" in dir(s)
assert "str" in dir(s) # as it is a string categorical
assert "dt" not in dir(s)
def test_tab_completion_cat_str(self):
# similar to cat and str
s = Series(date_range("1/1/2015", periods=5)).astype("category")
assert "cat" in dir(s)
assert "str" not in dir(s)
assert "dt" in dir(s) # as it is a datetime categorical
def test_tab_completion_with_categorical(self):
# test the tab completion display
ok_for_cat = [
"categories",
"codes",
"ordered",
"set_categories",
"add_categories",
"remove_categories",
"rename_categories",
"reorder_categories",
"remove_unused_categories",
"as_ordered",
"as_unordered",
]
s = Series(list("aabbcde")).astype("category")
results = sorted({r for r in s.cat.__dir__() if not r.startswith("_")})
tm.assert_almost_equal(results, sorted(set(ok_for_cat)))
@pytest.mark.parametrize(
"index",
[
tm.makeStringIndex(10),
tm.makeCategoricalIndex(10),
Index(["foo", "bar", "baz"] * 2),
tm.makeDateIndex(10),
tm.makePeriodIndex(10),
tm.makeTimedeltaIndex(10),
tm.makeIntIndex(10),
tm.makeUIntIndex(10),
tm.makeIntIndex(10),
tm.makeFloatIndex(10),
Index([True, False]),
Index([f"a{i}" for i in range(101)]),
pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")),
pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")),
],
)
def test_index_tab_completion(self, index):
# dir contains string-like values of the Index.
s = Series(index=index, dtype=object)
dir_s = dir(s)
for i, x in enumerate(s.index.unique(level=0)):
if i < 100:
assert not isinstance(x, str) or not x.isidentifier() or x in dir_s
else:
assert x not in dir_s
@pytest.mark.parametrize("ser", [Series(dtype=object), Series([1])])
def test_not_hashable(self, ser):
msg = "unhashable type: 'Series'"
with pytest.raises(TypeError, match=msg):
hash(ser)
def test_contains(self, datetime_series):
tm.assert_contains_all(datetime_series.index, datetime_series)
def test_axis_alias(self):
s = Series([1, 2, np.nan])
tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index"))
assert s.dropna().sum("rows") == 3
assert s._get_axis_number("rows") == 0
assert s._get_axis_name("rows") == "index"
def test_class_axis(self):
# https://github.com/pandas-dev/pandas/issues/18147
# no exception and no empty docstring
assert pydoc.getdoc(Series.index)
def test_ndarray_compat(self):
# test numpy compat with Series as sub-class of NDFrame
tsdf = DataFrame(
np.random.randn(1000, 3),
columns=["A", "B", "C"],
index=date_range("1/1/2000", periods=1000),
)
def f(x):
return x[x.idxmax()]
result = tsdf.apply(f)
expected = tsdf.max()
tm.assert_series_equal(result, expected)
def test_ndarray_compat_like_func(self):
# using an ndarray like function
s = Series(np.random.randn(10))
result = Series(np.ones_like(s))
expected = Series(1, index=range(10), dtype="float64")
tm.assert_series_equal(result, expected)
def test_ndarray_compat_ravel(self):
# ravel
s = Series(np.random.randn(10))
tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F"))
def test_empty_method(self):
s_empty = Series(dtype=object)
assert s_empty.empty
@pytest.mark.parametrize("dtype", ["int64", object])
def test_empty_method_full_series(self, dtype):
full_series = Series(index=[1], dtype=dtype)
assert not full_series.empty
@pytest.mark.parametrize("dtype", [None, "Int64"])
def test_integer_series_size(self, dtype):
# GH 25580
s = Series(range(9), dtype=dtype)
assert s.size == 9
def test_attrs(self):
s = Series([0, 1], name="abc")
assert s.attrs == {}
s.attrs["version"] = 1
result = s + 1
assert result.attrs == {"version": 1}
@skip_if_no("jinja2")
def test_inspect_getmembers(self):
# GH38782
ser = Series(dtype=object)
# TODO(2.0): Change to None once is_monotonic deprecation
# is enforced
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
inspect.getmembers(ser)
def test_unknown_attribute(self):
# GH#9680
tdi = pd.timedelta_range(start=0, periods=10, freq="1s")
ser = Series(np.random.normal(size=10), index=tdi)
assert "foo" not in ser.__dict__.keys()
msg = "'Series' object has no attribute 'foo'"
with pytest.raises(AttributeError, match=msg):
ser.foo
@pytest.mark.parametrize("op", ["year", "day", "second", "weekday"])
def test_datetime_series_no_datelike_attrs(self, op, datetime_series):
# GH#7206
msg = f"'Series' object has no attribute '{op}'"
with pytest.raises(AttributeError, match=msg):
getattr(datetime_series, op)
def test_series_datetimelike_attribute_access(self):
# attribute access should still work!
ser = Series({"year": 2000, "month": 1, "day": 10})
assert ser.year == 2000
assert ser.month == 1
assert ser.day == 10
def test_series_datetimelike_attribute_access_invalid(self):
ser = Series({"year": 2000, "month": 1, "day": 10})
msg = "'Series' object has no attribute 'weekday'"
with pytest.raises(AttributeError, match=msg):
ser.weekday
def test_series_iteritems_deprecated(self):
ser = Series([1])
with tm.assert_produces_warning(FutureWarning):
next(ser.iteritems())
@pytest.mark.parametrize(
"kernel, has_numeric_only",
[
("skew", True),
("var", True),
("all", False),
("prod", True),
("any", False),
("idxmin", False),
("quantile", False),
("idxmax", False),
("min", True),
("sem", True),
("mean", True),
("nunique", False),
("max", True),
("sum", True),
("count", False),
("median", True),
("std", True),
("backfill", False),
("rank", True),
("pct_change", False),
("cummax", False),
("shift", False),
("diff", False),
("cumsum", False),
("cummin", False),
("cumprod", False),
("fillna", False),
("ffill", False),
("pad", False),
("bfill", False),
("sample", False),
("tail", False),
("take", False),
("head", False),
("cov", False),
("corr", False),
],
)
@pytest.mark.parametrize("dtype", [bool, int, float, object])
def test_numeric_only(self, kernel, has_numeric_only, dtype):
# GH#47500
ser = Series([0, 1, 1], dtype=dtype)
if kernel == "corrwith":
args = (ser,)
elif kernel == "corr":
args = (ser,)
elif kernel == "cov":
args = (ser,)
elif kernel == "nth":
args = (0,)
elif kernel == "fillna":
args = (True,)
elif kernel == "fillna":
args = ("ffill",)
elif kernel == "take":
args = ([0],)
elif kernel == "quantile":
args = (0.5,)
else:
args = ()
method = getattr(ser, kernel)
if not has_numeric_only:
msg = (
"(got an unexpected keyword argument 'numeric_only'"
"|too many arguments passed in)"
)
with pytest.raises(TypeError, match=msg):
method(*args, numeric_only=True)
elif dtype is object:
if kernel == "rank":
msg = "Calling Series.rank with numeric_only=True and dtype object"
with tm.assert_produces_warning(FutureWarning, match=msg):
method(*args, numeric_only=True)
else:
warn_msg = (
f"Calling Series.{kernel} with numeric_only=True and dtype object"
)
err_msg = f"Series.{kernel} does not implement numeric_only"
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
with pytest.raises(NotImplementedError, match=err_msg):
method(*args, numeric_only=True)
else:
result = method(*args, numeric_only=True)
expected = method(*args, numeric_only=False)
if isinstance(expected, Series):
# transformer
tm.assert_series_equal(result, expected)
else:
# reducer
assert result == expected