ai-content-maker/.venv/Lib/site-packages/pandas/tests/window/test_ewm.py

756 lines
24 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
import pytest
from pandas.errors import UnsupportedFunctionCall
from pandas import (
DataFrame,
DatetimeIndex,
Series,
date_range,
)
import pandas._testing as tm
from pandas.core.window import ExponentialMovingWindow
def test_doc_string():
df = DataFrame({"B": [0, 1, 2, np.nan, 4]})
df
df.ewm(com=0.5).mean()
def test_constructor(frame_or_series):
c = frame_or_series(range(5)).ewm
# valid
c(com=0.5)
c(span=1.5)
c(alpha=0.5)
c(halflife=0.75)
c(com=0.5, span=None)
c(alpha=0.5, com=None)
c(halflife=0.75, alpha=None)
# not valid: mutually exclusive
msg = "comass, span, halflife, and alpha are mutually exclusive"
with pytest.raises(ValueError, match=msg):
c(com=0.5, alpha=0.5)
with pytest.raises(ValueError, match=msg):
c(span=1.5, halflife=0.75)
with pytest.raises(ValueError, match=msg):
c(alpha=0.5, span=1.5)
# not valid: com < 0
msg = "comass must satisfy: comass >= 0"
with pytest.raises(ValueError, match=msg):
c(com=-0.5)
# not valid: span < 1
msg = "span must satisfy: span >= 1"
with pytest.raises(ValueError, match=msg):
c(span=0.5)
# not valid: halflife <= 0
msg = "halflife must satisfy: halflife > 0"
with pytest.raises(ValueError, match=msg):
c(halflife=0)
# not valid: alpha <= 0 or alpha > 1
msg = "alpha must satisfy: 0 < alpha <= 1"
for alpha in (-0.5, 1.5):
with pytest.raises(ValueError, match=msg):
c(alpha=alpha)
@pytest.mark.parametrize("method", ["std", "mean", "var"])
def test_numpy_compat(method):
# see gh-12811
e = ExponentialMovingWindow(Series([2, 4, 6]), alpha=0.5)
error_msg = "numpy operations are not valid with window objects"
warn_msg = f"Passing additional args to ExponentialMovingWindow.{method}"
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
with pytest.raises(UnsupportedFunctionCall, match=error_msg):
getattr(e, method)(1, 2, 3)
warn_msg = f"Passing additional kwargs to ExponentialMovingWindow.{method}"
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
with pytest.raises(UnsupportedFunctionCall, match=error_msg):
getattr(e, method)(dtype=np.float64)
def test_ewma_times_not_datetime_type():
msg = r"times must be datetime64\[ns\] dtype."
with pytest.raises(ValueError, match=msg):
Series(range(5)).ewm(times=np.arange(5))
def test_ewma_times_not_same_length():
msg = "times must be the same length as the object."
with pytest.raises(ValueError, match=msg):
Series(range(5)).ewm(times=np.arange(4).astype("datetime64[ns]"))
def test_ewma_halflife_not_correct_type():
msg = "halflife must be a timedelta convertible object"
with pytest.raises(ValueError, match=msg):
Series(range(5)).ewm(halflife=1, times=np.arange(5).astype("datetime64[ns]"))
def test_ewma_halflife_without_times(halflife_with_times):
msg = "halflife can only be a timedelta convertible argument if times is not None."
with pytest.raises(ValueError, match=msg):
Series(range(5)).ewm(halflife=halflife_with_times)
@pytest.mark.parametrize(
"times",
[
np.arange(10).astype("datetime64[D]").astype("datetime64[ns]"),
date_range("2000", freq="D", periods=10),
date_range("2000", freq="D", periods=10).tz_localize("UTC"),
],
)
@pytest.mark.parametrize("min_periods", [0, 2])
def test_ewma_with_times_equal_spacing(halflife_with_times, times, min_periods):
halflife = halflife_with_times
data = np.arange(10.0)
data[::2] = np.nan
df = DataFrame({"A": data, "time_col": date_range("2000", freq="D", periods=10)})
with tm.assert_produces_warning(FutureWarning, match="nuisance columns"):
# GH#42738
result = df.ewm(halflife=halflife, min_periods=min_periods, times=times).mean()
expected = df.ewm(halflife=1.0, min_periods=min_periods).mean()
tm.assert_frame_equal(result, expected)
def test_ewma_with_times_variable_spacing(tz_aware_fixture):
tz = tz_aware_fixture
halflife = "23 days"
times = DatetimeIndex(
["2020-01-01", "2020-01-10T00:04:05", "2020-02-23T05:00:23"]
).tz_localize(tz)
data = np.arange(3)
df = DataFrame(data)
result = df.ewm(halflife=halflife, times=times).mean()
expected = DataFrame([0.0, 0.5674161888241773, 1.545239952073459])
tm.assert_frame_equal(result, expected)
def test_ewm_with_nat_raises(halflife_with_times):
# GH#38535
ser = Series(range(1))
times = DatetimeIndex(["NaT"])
with pytest.raises(ValueError, match="Cannot convert NaT values to integer"):
ser.ewm(com=0.1, halflife=halflife_with_times, times=times)
def test_ewm_with_times_getitem(halflife_with_times):
# GH 40164
halflife = halflife_with_times
data = np.arange(10.0)
data[::2] = np.nan
times = date_range("2000", freq="D", periods=10)
df = DataFrame({"A": data, "B": data})
result = df.ewm(halflife=halflife, times=times)["A"].mean()
expected = df.ewm(halflife=1.0)["A"].mean()
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("arg", ["com", "halflife", "span", "alpha"])
def test_ewm_getitem_attributes_retained(arg, adjust, ignore_na):
# GH 40164
kwargs = {arg: 1, "adjust": adjust, "ignore_na": ignore_na}
ewm = DataFrame({"A": range(1), "B": range(1)}).ewm(**kwargs)
expected = {attr: getattr(ewm, attr) for attr in ewm._attributes}
ewm_slice = ewm["A"]
result = {attr: getattr(ewm, attr) for attr in ewm_slice._attributes}
assert result == expected
def test_ewm_vol_deprecated():
ser = Series(range(1))
with tm.assert_produces_warning(FutureWarning):
result = ser.ewm(com=0.1).vol()
expected = ser.ewm(com=0.1).std()
tm.assert_series_equal(result, expected)
def test_ewma_times_adjust_false_raises():
# GH 40098
with pytest.raises(
NotImplementedError, match="times is not supported with adjust=False."
):
Series(range(1)).ewm(
0.1, adjust=False, times=date_range("2000", freq="D", periods=1)
)
@pytest.mark.parametrize(
"func, expected",
[
[
"mean",
DataFrame(
{
0: range(5),
1: range(4, 9),
2: [7.428571, 9, 10.571429, 12.142857, 13.714286],
},
dtype=float,
),
],
[
"std",
DataFrame(
{
0: [np.nan] * 5,
1: [4.242641] * 5,
2: [4.6291, 5.196152, 5.781745, 6.380775, 6.989788],
}
),
],
[
"var",
DataFrame(
{
0: [np.nan] * 5,
1: [18.0] * 5,
2: [21.428571, 27, 33.428571, 40.714286, 48.857143],
}
),
],
],
)
def test_float_dtype_ewma(func, expected, float_numpy_dtype):
# GH#42452
df = DataFrame(
{0: range(5), 1: range(6, 11), 2: range(10, 20, 2)}, dtype=float_numpy_dtype
)
e = df.ewm(alpha=0.5, axis=1)
result = getattr(e, func)()
tm.assert_frame_equal(result, expected)
def test_times_string_col_deprecated():
# GH 43265
data = np.arange(10.0)
data[::2] = np.nan
df = DataFrame({"A": data, "time_col": date_range("2000", freq="D", periods=10)})
with tm.assert_produces_warning(FutureWarning, match="Specifying times"):
result = df.ewm(halflife="1 day", min_periods=0, times="time_col").mean()
expected = df.ewm(halflife=1.0, min_periods=0).mean()
tm.assert_frame_equal(result, expected)
def test_ewm_sum_adjust_false_notimplemented():
data = Series(range(1)).ewm(com=1, adjust=False)
with pytest.raises(NotImplementedError, match="sum is not"):
data.sum()
@pytest.mark.parametrize(
"expected_data, ignore",
[[[10.0, 5.0, 2.5, 11.25], False], [[10.0, 5.0, 5.0, 12.5], True]],
)
def test_ewm_sum(expected_data, ignore):
# xref from Numbagg tests
# https://github.com/numbagg/numbagg/blob/v0.2.1/numbagg/test/test_moving.py#L50
data = Series([10, 0, np.nan, 10])
result = data.ewm(alpha=0.5, ignore_na=ignore).sum()
expected = Series(expected_data)
tm.assert_series_equal(result, expected)
def test_ewma_adjust():
vals = Series(np.zeros(1000))
vals[5] = 1
result = vals.ewm(span=100, adjust=False).mean().sum()
assert np.abs(result - 1) < 1e-2
def test_ewma_cases(adjust, ignore_na):
# try adjust/ignore_na args matrix
s = Series([1.0, 2.0, 4.0, 8.0])
if adjust:
expected = Series([1.0, 1.6, 2.736842, 4.923077])
else:
expected = Series([1.0, 1.333333, 2.222222, 4.148148])
result = s.ewm(com=2.0, adjust=adjust, ignore_na=ignore_na).mean()
tm.assert_series_equal(result, expected)
def test_ewma_nan_handling():
s = Series([1.0] + [np.nan] * 5 + [1.0])
result = s.ewm(com=5).mean()
tm.assert_series_equal(result, Series([1.0] * len(s)))
s = Series([np.nan] * 2 + [1.0] + [np.nan] * 2 + [1.0])
result = s.ewm(com=5).mean()
tm.assert_series_equal(result, Series([np.nan] * 2 + [1.0] * 4))
@pytest.mark.parametrize(
"s, adjust, ignore_na, w",
[
(
Series([np.nan, 1.0, 101.0]),
True,
False,
[np.nan, (1.0 - (1.0 / (1.0 + 2.0))), 1.0],
),
(
Series([np.nan, 1.0, 101.0]),
True,
True,
[np.nan, (1.0 - (1.0 / (1.0 + 2.0))), 1.0],
),
(
Series([np.nan, 1.0, 101.0]),
False,
False,
[np.nan, (1.0 - (1.0 / (1.0 + 2.0))), (1.0 / (1.0 + 2.0))],
),
(
Series([np.nan, 1.0, 101.0]),
False,
True,
[np.nan, (1.0 - (1.0 / (1.0 + 2.0))), (1.0 / (1.0 + 2.0))],
),
(
Series([1.0, np.nan, 101.0]),
True,
False,
[(1.0 - (1.0 / (1.0 + 2.0))) ** 2, np.nan, 1.0],
),
(
Series([1.0, np.nan, 101.0]),
True,
True,
[(1.0 - (1.0 / (1.0 + 2.0))), np.nan, 1.0],
),
(
Series([1.0, np.nan, 101.0]),
False,
False,
[(1.0 - (1.0 / (1.0 + 2.0))) ** 2, np.nan, (1.0 / (1.0 + 2.0))],
),
(
Series([1.0, np.nan, 101.0]),
False,
True,
[(1.0 - (1.0 / (1.0 + 2.0))), np.nan, (1.0 / (1.0 + 2.0))],
),
(
Series([np.nan, 1.0, np.nan, np.nan, 101.0, np.nan]),
True,
False,
[np.nan, (1.0 - (1.0 / (1.0 + 2.0))) ** 3, np.nan, np.nan, 1.0, np.nan],
),
(
Series([np.nan, 1.0, np.nan, np.nan, 101.0, np.nan]),
True,
True,
[np.nan, (1.0 - (1.0 / (1.0 + 2.0))), np.nan, np.nan, 1.0, np.nan],
),
(
Series([np.nan, 1.0, np.nan, np.nan, 101.0, np.nan]),
False,
False,
[
np.nan,
(1.0 - (1.0 / (1.0 + 2.0))) ** 3,
np.nan,
np.nan,
(1.0 / (1.0 + 2.0)),
np.nan,
],
),
(
Series([np.nan, 1.0, np.nan, np.nan, 101.0, np.nan]),
False,
True,
[
np.nan,
(1.0 - (1.0 / (1.0 + 2.0))),
np.nan,
np.nan,
(1.0 / (1.0 + 2.0)),
np.nan,
],
),
(
Series([1.0, np.nan, 101.0, 50.0]),
True,
False,
[
(1.0 - (1.0 / (1.0 + 2.0))) ** 3,
np.nan,
(1.0 - (1.0 / (1.0 + 2.0))),
1.0,
],
),
(
Series([1.0, np.nan, 101.0, 50.0]),
True,
True,
[
(1.0 - (1.0 / (1.0 + 2.0))) ** 2,
np.nan,
(1.0 - (1.0 / (1.0 + 2.0))),
1.0,
],
),
(
Series([1.0, np.nan, 101.0, 50.0]),
False,
False,
[
(1.0 - (1.0 / (1.0 + 2.0))) ** 3,
np.nan,
(1.0 - (1.0 / (1.0 + 2.0))) * (1.0 / (1.0 + 2.0)),
(1.0 / (1.0 + 2.0))
* ((1.0 - (1.0 / (1.0 + 2.0))) ** 2 + (1.0 / (1.0 + 2.0))),
],
),
(
Series([1.0, np.nan, 101.0, 50.0]),
False,
True,
[
(1.0 - (1.0 / (1.0 + 2.0))) ** 2,
np.nan,
(1.0 - (1.0 / (1.0 + 2.0))) * (1.0 / (1.0 + 2.0)),
(1.0 / (1.0 + 2.0)),
],
),
],
)
def test_ewma_nan_handling_cases(s, adjust, ignore_na, w):
# GH 7603
expected = (s.multiply(w).cumsum() / Series(w).cumsum()).fillna(method="ffill")
result = s.ewm(com=2.0, adjust=adjust, ignore_na=ignore_na).mean()
tm.assert_series_equal(result, expected)
if ignore_na is False:
# check that ignore_na defaults to False
result = s.ewm(com=2.0, adjust=adjust).mean()
tm.assert_series_equal(result, expected)
def test_ewm_alpha():
# GH 10789
arr = np.random.randn(100)
locs = np.arange(20, 40)
arr[locs] = np.NaN
s = Series(arr)
a = s.ewm(alpha=0.61722699889169674).mean()
b = s.ewm(com=0.62014947789973052).mean()
c = s.ewm(span=2.240298955799461).mean()
d = s.ewm(halflife=0.721792864318).mean()
tm.assert_series_equal(a, b)
tm.assert_series_equal(a, c)
tm.assert_series_equal(a, d)
def test_ewm_domain_checks():
# GH 12492
arr = np.random.randn(100)
locs = np.arange(20, 40)
arr[locs] = np.NaN
s = Series(arr)
msg = "comass must satisfy: comass >= 0"
with pytest.raises(ValueError, match=msg):
s.ewm(com=-0.1)
s.ewm(com=0.0)
s.ewm(com=0.1)
msg = "span must satisfy: span >= 1"
with pytest.raises(ValueError, match=msg):
s.ewm(span=-0.1)
with pytest.raises(ValueError, match=msg):
s.ewm(span=0.0)
with pytest.raises(ValueError, match=msg):
s.ewm(span=0.9)
s.ewm(span=1.0)
s.ewm(span=1.1)
msg = "halflife must satisfy: halflife > 0"
with pytest.raises(ValueError, match=msg):
s.ewm(halflife=-0.1)
with pytest.raises(ValueError, match=msg):
s.ewm(halflife=0.0)
s.ewm(halflife=0.1)
msg = "alpha must satisfy: 0 < alpha <= 1"
with pytest.raises(ValueError, match=msg):
s.ewm(alpha=-0.1)
with pytest.raises(ValueError, match=msg):
s.ewm(alpha=0.0)
s.ewm(alpha=0.1)
s.ewm(alpha=1.0)
with pytest.raises(ValueError, match=msg):
s.ewm(alpha=1.1)
@pytest.mark.parametrize("method", ["mean", "std", "var"])
def test_ew_empty_series(method):
vals = Series([], dtype=np.float64)
ewm = vals.ewm(3)
result = getattr(ewm, method)()
tm.assert_almost_equal(result, vals)
@pytest.mark.parametrize("min_periods", [0, 1])
@pytest.mark.parametrize("name", ["mean", "var", "std"])
def test_ew_min_periods(min_periods, name):
# excluding NaNs correctly
arr = np.random.randn(50)
arr[:10] = np.NaN
arr[-10:] = np.NaN
s = Series(arr)
# check min_periods
# GH 7898
result = getattr(s.ewm(com=50, min_periods=2), name)()
assert result[:11].isna().all()
assert not result[11:].isna().any()
result = getattr(s.ewm(com=50, min_periods=min_periods), name)()
if name == "mean":
assert result[:10].isna().all()
assert not result[10:].isna().any()
else:
# ewm.std, ewm.var (with bias=False) require at least
# two values
assert result[:11].isna().all()
assert not result[11:].isna().any()
# check series of length 0
result = getattr(Series(dtype=object).ewm(com=50, min_periods=min_periods), name)()
tm.assert_series_equal(result, Series(dtype="float64"))
# check series of length 1
result = getattr(Series([1.0]).ewm(50, min_periods=min_periods), name)()
if name == "mean":
tm.assert_series_equal(result, Series([1.0]))
else:
# ewm.std, ewm.var with bias=False require at least
# two values
tm.assert_series_equal(result, Series([np.NaN]))
# pass in ints
result2 = getattr(Series(np.arange(50)).ewm(span=10), name)()
assert result2.dtype == np.float_
@pytest.mark.parametrize("name", ["cov", "corr"])
def test_ewm_corr_cov(name):
A = Series(np.random.randn(50), index=range(50))
B = A[2:] + np.random.randn(48)
A[:10] = np.NaN
B.iloc[-10:] = np.NaN
result = getattr(A.ewm(com=20, min_periods=5), name)(B)
assert np.isnan(result.values[:14]).all()
assert not np.isnan(result.values[14:]).any()
@pytest.mark.parametrize("min_periods", [0, 1, 2])
@pytest.mark.parametrize("name", ["cov", "corr"])
def test_ewm_corr_cov_min_periods(name, min_periods):
# GH 7898
A = Series(np.random.randn(50), index=range(50))
B = A[2:] + np.random.randn(48)
A[:10] = np.NaN
B.iloc[-10:] = np.NaN
result = getattr(A.ewm(com=20, min_periods=min_periods), name)(B)
# binary functions (ewmcov, ewmcorr) with bias=False require at
# least two values
assert np.isnan(result.values[:11]).all()
assert not np.isnan(result.values[11:]).any()
# check series of length 0
empty = Series([], dtype=np.float64)
result = getattr(empty.ewm(com=50, min_periods=min_periods), name)(empty)
tm.assert_series_equal(result, empty)
# check series of length 1
result = getattr(Series([1.0]).ewm(com=50, min_periods=min_periods), name)(
Series([1.0])
)
tm.assert_series_equal(result, Series([np.NaN]))
@pytest.mark.parametrize("name", ["cov", "corr"])
def test_different_input_array_raise_exception(name):
A = Series(np.random.randn(50), index=range(50))
A[:10] = np.NaN
msg = "other must be a DataFrame or Series"
# exception raised is Exception
with pytest.raises(ValueError, match=msg):
getattr(A.ewm(com=20, min_periods=5), name)(np.random.randn(50))
@pytest.mark.parametrize("name", ["var", "std", "mean"])
def test_ewma_series(series, name):
series_result = getattr(series.ewm(com=10), name)()
assert isinstance(series_result, Series)
@pytest.mark.parametrize("name", ["var", "std", "mean"])
def test_ewma_frame(frame, name):
frame_result = getattr(frame.ewm(com=10), name)()
assert isinstance(frame_result, DataFrame)
def test_ewma_span_com_args(series):
A = series.ewm(com=9.5).mean()
B = series.ewm(span=20).mean()
tm.assert_almost_equal(A, B)
msg = "comass, span, halflife, and alpha are mutually exclusive"
with pytest.raises(ValueError, match=msg):
series.ewm(com=9.5, span=20)
msg = "Must pass one of comass, span, halflife, or alpha"
with pytest.raises(ValueError, match=msg):
series.ewm().mean()
def test_ewma_halflife_arg(series):
A = series.ewm(com=13.932726172912965).mean()
B = series.ewm(halflife=10.0).mean()
tm.assert_almost_equal(A, B)
msg = "comass, span, halflife, and alpha are mutually exclusive"
with pytest.raises(ValueError, match=msg):
series.ewm(span=20, halflife=50)
with pytest.raises(ValueError, match=msg):
series.ewm(com=9.5, halflife=50)
with pytest.raises(ValueError, match=msg):
series.ewm(com=9.5, span=20, halflife=50)
msg = "Must pass one of comass, span, halflife, or alpha"
with pytest.raises(ValueError, match=msg):
series.ewm()
def test_ewm_alpha_arg(series):
# GH 10789
s = series
msg = "Must pass one of comass, span, halflife, or alpha"
with pytest.raises(ValueError, match=msg):
s.ewm()
msg = "comass, span, halflife, and alpha are mutually exclusive"
with pytest.raises(ValueError, match=msg):
s.ewm(com=10.0, alpha=0.5)
with pytest.raises(ValueError, match=msg):
s.ewm(span=10.0, alpha=0.5)
with pytest.raises(ValueError, match=msg):
s.ewm(halflife=10.0, alpha=0.5)
@pytest.mark.parametrize("func", ["cov", "corr"])
def test_ewm_pairwise_cov_corr(func, frame):
result = getattr(frame.ewm(span=10, min_periods=5), func)()
result = result.loc[(slice(None), 1), 5]
result.index = result.index.droplevel(1)
expected = getattr(frame[1].ewm(span=10, min_periods=5), func)(frame[5])
tm.assert_series_equal(result, expected, check_names=False)
def test_numeric_only_frame(arithmetic_win_operators, numeric_only):
# GH#46560
kernel = arithmetic_win_operators
df = DataFrame({"a": [1], "b": 2, "c": 3})
df["c"] = df["c"].astype(object)
ewm = df.ewm(span=2, min_periods=1)
op = getattr(ewm, kernel, None)
if op is not None:
result = op(numeric_only=numeric_only)
columns = ["a", "b"] if numeric_only else ["a", "b", "c"]
expected = df[columns].agg([kernel]).reset_index(drop=True).astype(float)
assert list(expected.columns) == columns
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("kernel", ["corr", "cov"])
@pytest.mark.parametrize("use_arg", [True, False])
def test_numeric_only_corr_cov_frame(kernel, numeric_only, use_arg):
# GH#46560
df = DataFrame({"a": [1, 2, 3], "b": 2, "c": 3})
df["c"] = df["c"].astype(object)
arg = (df,) if use_arg else ()
ewm = df.ewm(span=2, min_periods=1)
op = getattr(ewm, kernel)
result = op(*arg, numeric_only=numeric_only)
# Compare result to op using float dtypes, dropping c when numeric_only is True
columns = ["a", "b"] if numeric_only else ["a", "b", "c"]
df2 = df[columns].astype(float)
arg2 = (df2,) if use_arg else ()
ewm2 = df2.ewm(span=2, min_periods=1)
op2 = getattr(ewm2, kernel)
expected = op2(*arg2, numeric_only=numeric_only)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", [int, object])
def test_numeric_only_series(arithmetic_win_operators, numeric_only, dtype):
# GH#46560
kernel = arithmetic_win_operators
ser = Series([1], dtype=dtype)
ewm = ser.ewm(span=2, min_periods=1)
op = getattr(ewm, kernel, None)
if op is None:
# Nothing to test
return
if numeric_only and dtype is object:
msg = f"ExponentialMovingWindow.{kernel} does not implement numeric_only"
with pytest.raises(NotImplementedError, match=msg):
op(numeric_only=numeric_only)
else:
result = op(numeric_only=numeric_only)
expected = ser.agg([kernel]).reset_index(drop=True).astype(float)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("kernel", ["corr", "cov"])
@pytest.mark.parametrize("use_arg", [True, False])
@pytest.mark.parametrize("dtype", [int, object])
def test_numeric_only_corr_cov_series(kernel, use_arg, numeric_only, dtype):
# GH#46560
ser = Series([1, 2, 3], dtype=dtype)
arg = (ser,) if use_arg else ()
ewm = ser.ewm(span=2, min_periods=1)
op = getattr(ewm, kernel)
if numeric_only and dtype is object:
msg = f"ExponentialMovingWindow.{kernel} does not implement numeric_only"
with pytest.raises(NotImplementedError, match=msg):
op(*arg, numeric_only=numeric_only)
else:
result = op(*arg, numeric_only=numeric_only)
ser2 = ser.astype(float)
arg2 = (ser2,) if use_arg else ()
ewm2 = ser2.ewm(span=2, min_periods=1)
op2 = getattr(ewm2, kernel)
expected = op2(*arg2, numeric_only=numeric_only)
tm.assert_series_equal(result, expected)