1254 lines
49 KiB
Python
1254 lines
49 KiB
Python
|
import copy
|
|||
|
import re
|
|||
|
from collections import Counter as CollectionCounter, defaultdict, deque
|
|||
|
from collections.abc import Callable, Hashable as CollectionsHashable, Iterable as CollectionsIterable
|
|||
|
from typing import (
|
|||
|
TYPE_CHECKING,
|
|||
|
Any,
|
|||
|
Counter,
|
|||
|
DefaultDict,
|
|||
|
Deque,
|
|||
|
Dict,
|
|||
|
ForwardRef,
|
|||
|
FrozenSet,
|
|||
|
Generator,
|
|||
|
Iterable,
|
|||
|
Iterator,
|
|||
|
List,
|
|||
|
Mapping,
|
|||
|
Optional,
|
|||
|
Pattern,
|
|||
|
Sequence,
|
|||
|
Set,
|
|||
|
Tuple,
|
|||
|
Type,
|
|||
|
TypeVar,
|
|||
|
Union,
|
|||
|
)
|
|||
|
|
|||
|
from typing_extensions import Annotated, Final
|
|||
|
|
|||
|
from . import errors as errors_
|
|||
|
from .class_validators import Validator, make_generic_validator, prep_validators
|
|||
|
from .error_wrappers import ErrorWrapper
|
|||
|
from .errors import ConfigError, InvalidDiscriminator, MissingDiscriminator, NoneIsNotAllowedError
|
|||
|
from .types import Json, JsonWrapper
|
|||
|
from .typing import (
|
|||
|
NoArgAnyCallable,
|
|||
|
convert_generics,
|
|||
|
display_as_type,
|
|||
|
get_args,
|
|||
|
get_origin,
|
|||
|
is_finalvar,
|
|||
|
is_literal_type,
|
|||
|
is_new_type,
|
|||
|
is_none_type,
|
|||
|
is_typeddict,
|
|||
|
is_typeddict_special,
|
|||
|
is_union,
|
|||
|
new_type_supertype,
|
|||
|
)
|
|||
|
from .utils import (
|
|||
|
PyObjectStr,
|
|||
|
Representation,
|
|||
|
ValueItems,
|
|||
|
get_discriminator_alias_and_values,
|
|||
|
get_unique_discriminator_alias,
|
|||
|
lenient_isinstance,
|
|||
|
lenient_issubclass,
|
|||
|
sequence_like,
|
|||
|
smart_deepcopy,
|
|||
|
)
|
|||
|
from .validators import constant_validator, dict_validator, find_validators, validate_json
|
|||
|
|
|||
|
Required: Any = Ellipsis
|
|||
|
|
|||
|
T = TypeVar('T')
|
|||
|
|
|||
|
|
|||
|
class UndefinedType:
|
|||
|
def __repr__(self) -> str:
|
|||
|
return 'PydanticUndefined'
|
|||
|
|
|||
|
def __copy__(self: T) -> T:
|
|||
|
return self
|
|||
|
|
|||
|
def __reduce__(self) -> str:
|
|||
|
return 'Undefined'
|
|||
|
|
|||
|
def __deepcopy__(self: T, _: Any) -> T:
|
|||
|
return self
|
|||
|
|
|||
|
|
|||
|
Undefined = UndefinedType()
|
|||
|
|
|||
|
if TYPE_CHECKING:
|
|||
|
from .class_validators import ValidatorsList
|
|||
|
from .config import BaseConfig
|
|||
|
from .error_wrappers import ErrorList
|
|||
|
from .types import ModelOrDc
|
|||
|
from .typing import AbstractSetIntStr, MappingIntStrAny, ReprArgs
|
|||
|
|
|||
|
ValidateReturn = Tuple[Optional[Any], Optional[ErrorList]]
|
|||
|
LocStr = Union[Tuple[Union[int, str], ...], str]
|
|||
|
BoolUndefined = Union[bool, UndefinedType]
|
|||
|
|
|||
|
|
|||
|
class FieldInfo(Representation):
|
|||
|
"""
|
|||
|
Captures extra information about a field.
|
|||
|
"""
|
|||
|
|
|||
|
__slots__ = (
|
|||
|
'default',
|
|||
|
'default_factory',
|
|||
|
'alias',
|
|||
|
'alias_priority',
|
|||
|
'title',
|
|||
|
'description',
|
|||
|
'exclude',
|
|||
|
'include',
|
|||
|
'const',
|
|||
|
'gt',
|
|||
|
'ge',
|
|||
|
'lt',
|
|||
|
'le',
|
|||
|
'multiple_of',
|
|||
|
'allow_inf_nan',
|
|||
|
'max_digits',
|
|||
|
'decimal_places',
|
|||
|
'min_items',
|
|||
|
'max_items',
|
|||
|
'unique_items',
|
|||
|
'min_length',
|
|||
|
'max_length',
|
|||
|
'allow_mutation',
|
|||
|
'repr',
|
|||
|
'regex',
|
|||
|
'discriminator',
|
|||
|
'extra',
|
|||
|
)
|
|||
|
|
|||
|
# field constraints with the default value, it's also used in update_from_config below
|
|||
|
__field_constraints__ = {
|
|||
|
'min_length': None,
|
|||
|
'max_length': None,
|
|||
|
'regex': None,
|
|||
|
'gt': None,
|
|||
|
'lt': None,
|
|||
|
'ge': None,
|
|||
|
'le': None,
|
|||
|
'multiple_of': None,
|
|||
|
'allow_inf_nan': None,
|
|||
|
'max_digits': None,
|
|||
|
'decimal_places': None,
|
|||
|
'min_items': None,
|
|||
|
'max_items': None,
|
|||
|
'unique_items': None,
|
|||
|
'allow_mutation': True,
|
|||
|
}
|
|||
|
|
|||
|
def __init__(self, default: Any = Undefined, **kwargs: Any) -> None:
|
|||
|
self.default = default
|
|||
|
self.default_factory = kwargs.pop('default_factory', None)
|
|||
|
self.alias = kwargs.pop('alias', None)
|
|||
|
self.alias_priority = kwargs.pop('alias_priority', 2 if self.alias is not None else None)
|
|||
|
self.title = kwargs.pop('title', None)
|
|||
|
self.description = kwargs.pop('description', None)
|
|||
|
self.exclude = kwargs.pop('exclude', None)
|
|||
|
self.include = kwargs.pop('include', None)
|
|||
|
self.const = kwargs.pop('const', None)
|
|||
|
self.gt = kwargs.pop('gt', None)
|
|||
|
self.ge = kwargs.pop('ge', None)
|
|||
|
self.lt = kwargs.pop('lt', None)
|
|||
|
self.le = kwargs.pop('le', None)
|
|||
|
self.multiple_of = kwargs.pop('multiple_of', None)
|
|||
|
self.allow_inf_nan = kwargs.pop('allow_inf_nan', None)
|
|||
|
self.max_digits = kwargs.pop('max_digits', None)
|
|||
|
self.decimal_places = kwargs.pop('decimal_places', None)
|
|||
|
self.min_items = kwargs.pop('min_items', None)
|
|||
|
self.max_items = kwargs.pop('max_items', None)
|
|||
|
self.unique_items = kwargs.pop('unique_items', None)
|
|||
|
self.min_length = kwargs.pop('min_length', None)
|
|||
|
self.max_length = kwargs.pop('max_length', None)
|
|||
|
self.allow_mutation = kwargs.pop('allow_mutation', True)
|
|||
|
self.regex = kwargs.pop('regex', None)
|
|||
|
self.discriminator = kwargs.pop('discriminator', None)
|
|||
|
self.repr = kwargs.pop('repr', True)
|
|||
|
self.extra = kwargs
|
|||
|
|
|||
|
def __repr_args__(self) -> 'ReprArgs':
|
|||
|
field_defaults_to_hide: Dict[str, Any] = {
|
|||
|
'repr': True,
|
|||
|
**self.__field_constraints__,
|
|||
|
}
|
|||
|
|
|||
|
attrs = ((s, getattr(self, s)) for s in self.__slots__)
|
|||
|
return [(a, v) for a, v in attrs if v != field_defaults_to_hide.get(a, None)]
|
|||
|
|
|||
|
def get_constraints(self) -> Set[str]:
|
|||
|
"""
|
|||
|
Gets the constraints set on the field by comparing the constraint value with its default value
|
|||
|
|
|||
|
:return: the constraints set on field_info
|
|||
|
"""
|
|||
|
return {attr for attr, default in self.__field_constraints__.items() if getattr(self, attr) != default}
|
|||
|
|
|||
|
def update_from_config(self, from_config: Dict[str, Any]) -> None:
|
|||
|
"""
|
|||
|
Update this FieldInfo based on a dict from get_field_info, only fields which have not been set are dated.
|
|||
|
"""
|
|||
|
for attr_name, value in from_config.items():
|
|||
|
try:
|
|||
|
current_value = getattr(self, attr_name)
|
|||
|
except AttributeError:
|
|||
|
# attr_name is not an attribute of FieldInfo, it should therefore be added to extra
|
|||
|
# (except if extra already has this value!)
|
|||
|
self.extra.setdefault(attr_name, value)
|
|||
|
else:
|
|||
|
if current_value is self.__field_constraints__.get(attr_name, None):
|
|||
|
setattr(self, attr_name, value)
|
|||
|
elif attr_name == 'exclude':
|
|||
|
self.exclude = ValueItems.merge(value, current_value)
|
|||
|
elif attr_name == 'include':
|
|||
|
self.include = ValueItems.merge(value, current_value, intersect=True)
|
|||
|
|
|||
|
def _validate(self) -> None:
|
|||
|
if self.default is not Undefined and self.default_factory is not None:
|
|||
|
raise ValueError('cannot specify both default and default_factory')
|
|||
|
|
|||
|
|
|||
|
def Field(
|
|||
|
default: Any = Undefined,
|
|||
|
*,
|
|||
|
default_factory: Optional[NoArgAnyCallable] = None,
|
|||
|
alias: Optional[str] = None,
|
|||
|
title: Optional[str] = None,
|
|||
|
description: Optional[str] = None,
|
|||
|
exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny', Any]] = None,
|
|||
|
include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny', Any]] = None,
|
|||
|
const: Optional[bool] = None,
|
|||
|
gt: Optional[float] = None,
|
|||
|
ge: Optional[float] = None,
|
|||
|
lt: Optional[float] = None,
|
|||
|
le: Optional[float] = None,
|
|||
|
multiple_of: Optional[float] = None,
|
|||
|
allow_inf_nan: Optional[bool] = None,
|
|||
|
max_digits: Optional[int] = None,
|
|||
|
decimal_places: Optional[int] = None,
|
|||
|
min_items: Optional[int] = None,
|
|||
|
max_items: Optional[int] = None,
|
|||
|
unique_items: Optional[bool] = None,
|
|||
|
min_length: Optional[int] = None,
|
|||
|
max_length: Optional[int] = None,
|
|||
|
allow_mutation: bool = True,
|
|||
|
regex: Optional[str] = None,
|
|||
|
discriminator: Optional[str] = None,
|
|||
|
repr: bool = True,
|
|||
|
**extra: Any,
|
|||
|
) -> Any:
|
|||
|
"""
|
|||
|
Used to provide extra information about a field, either for the model schema or complex validation. Some arguments
|
|||
|
apply only to number fields (``int``, ``float``, ``Decimal``) and some apply only to ``str``.
|
|||
|
|
|||
|
:param default: since this is replacing the field’s default, its first argument is used
|
|||
|
to set the default, use ellipsis (``...``) to indicate the field is required
|
|||
|
:param default_factory: callable that will be called when a default value is needed for this field
|
|||
|
If both `default` and `default_factory` are set, an error is raised.
|
|||
|
:param alias: the public name of the field
|
|||
|
:param title: can be any string, used in the schema
|
|||
|
:param description: can be any string, used in the schema
|
|||
|
:param exclude: exclude this field while dumping.
|
|||
|
Takes same values as the ``include`` and ``exclude`` arguments on the ``.dict`` method.
|
|||
|
:param include: include this field while dumping.
|
|||
|
Takes same values as the ``include`` and ``exclude`` arguments on the ``.dict`` method.
|
|||
|
:param const: this field is required and *must* take it's default value
|
|||
|
:param gt: only applies to numbers, requires the field to be "greater than". The schema
|
|||
|
will have an ``exclusiveMinimum`` validation keyword
|
|||
|
:param ge: only applies to numbers, requires the field to be "greater than or equal to". The
|
|||
|
schema will have a ``minimum`` validation keyword
|
|||
|
:param lt: only applies to numbers, requires the field to be "less than". The schema
|
|||
|
will have an ``exclusiveMaximum`` validation keyword
|
|||
|
:param le: only applies to numbers, requires the field to be "less than or equal to". The
|
|||
|
schema will have a ``maximum`` validation keyword
|
|||
|
:param multiple_of: only applies to numbers, requires the field to be "a multiple of". The
|
|||
|
schema will have a ``multipleOf`` validation keyword
|
|||
|
:param allow_inf_nan: only applies to numbers, allows the field to be NaN or infinity (+inf or -inf),
|
|||
|
which is a valid Python float. Default True, set to False for compatibility with JSON.
|
|||
|
:param max_digits: only applies to Decimals, requires the field to have a maximum number
|
|||
|
of digits within the decimal. It does not include a zero before the decimal point or trailing decimal zeroes.
|
|||
|
:param decimal_places: only applies to Decimals, requires the field to have at most a number of decimal places
|
|||
|
allowed. It does not include trailing decimal zeroes.
|
|||
|
:param min_items: only applies to lists, requires the field to have a minimum number of
|
|||
|
elements. The schema will have a ``minItems`` validation keyword
|
|||
|
:param max_items: only applies to lists, requires the field to have a maximum number of
|
|||
|
elements. The schema will have a ``maxItems`` validation keyword
|
|||
|
:param unique_items: only applies to lists, requires the field not to have duplicated
|
|||
|
elements. The schema will have a ``uniqueItems`` validation keyword
|
|||
|
:param min_length: only applies to strings, requires the field to have a minimum length. The
|
|||
|
schema will have a ``minLength`` validation keyword
|
|||
|
:param max_length: only applies to strings, requires the field to have a maximum length. The
|
|||
|
schema will have a ``maxLength`` validation keyword
|
|||
|
:param allow_mutation: a boolean which defaults to True. When False, the field raises a TypeError if the field is
|
|||
|
assigned on an instance. The BaseModel Config must set validate_assignment to True
|
|||
|
:param regex: only applies to strings, requires the field match against a regular expression
|
|||
|
pattern string. The schema will have a ``pattern`` validation keyword
|
|||
|
:param discriminator: only useful with a (discriminated a.k.a. tagged) `Union` of sub models with a common field.
|
|||
|
The `discriminator` is the name of this common field to shorten validation and improve generated schema
|
|||
|
:param repr: show this field in the representation
|
|||
|
:param **extra: any additional keyword arguments will be added as is to the schema
|
|||
|
"""
|
|||
|
field_info = FieldInfo(
|
|||
|
default,
|
|||
|
default_factory=default_factory,
|
|||
|
alias=alias,
|
|||
|
title=title,
|
|||
|
description=description,
|
|||
|
exclude=exclude,
|
|||
|
include=include,
|
|||
|
const=const,
|
|||
|
gt=gt,
|
|||
|
ge=ge,
|
|||
|
lt=lt,
|
|||
|
le=le,
|
|||
|
multiple_of=multiple_of,
|
|||
|
allow_inf_nan=allow_inf_nan,
|
|||
|
max_digits=max_digits,
|
|||
|
decimal_places=decimal_places,
|
|||
|
min_items=min_items,
|
|||
|
max_items=max_items,
|
|||
|
unique_items=unique_items,
|
|||
|
min_length=min_length,
|
|||
|
max_length=max_length,
|
|||
|
allow_mutation=allow_mutation,
|
|||
|
regex=regex,
|
|||
|
discriminator=discriminator,
|
|||
|
repr=repr,
|
|||
|
**extra,
|
|||
|
)
|
|||
|
field_info._validate()
|
|||
|
return field_info
|
|||
|
|
|||
|
|
|||
|
# used to be an enum but changed to int's for small performance improvement as less access overhead
|
|||
|
SHAPE_SINGLETON = 1
|
|||
|
SHAPE_LIST = 2
|
|||
|
SHAPE_SET = 3
|
|||
|
SHAPE_MAPPING = 4
|
|||
|
SHAPE_TUPLE = 5
|
|||
|
SHAPE_TUPLE_ELLIPSIS = 6
|
|||
|
SHAPE_SEQUENCE = 7
|
|||
|
SHAPE_FROZENSET = 8
|
|||
|
SHAPE_ITERABLE = 9
|
|||
|
SHAPE_GENERIC = 10
|
|||
|
SHAPE_DEQUE = 11
|
|||
|
SHAPE_DICT = 12
|
|||
|
SHAPE_DEFAULTDICT = 13
|
|||
|
SHAPE_COUNTER = 14
|
|||
|
SHAPE_NAME_LOOKUP = {
|
|||
|
SHAPE_LIST: 'List[{}]',
|
|||
|
SHAPE_SET: 'Set[{}]',
|
|||
|
SHAPE_TUPLE_ELLIPSIS: 'Tuple[{}, ...]',
|
|||
|
SHAPE_SEQUENCE: 'Sequence[{}]',
|
|||
|
SHAPE_FROZENSET: 'FrozenSet[{}]',
|
|||
|
SHAPE_ITERABLE: 'Iterable[{}]',
|
|||
|
SHAPE_DEQUE: 'Deque[{}]',
|
|||
|
SHAPE_DICT: 'Dict[{}]',
|
|||
|
SHAPE_DEFAULTDICT: 'DefaultDict[{}]',
|
|||
|
SHAPE_COUNTER: 'Counter[{}]',
|
|||
|
}
|
|||
|
|
|||
|
MAPPING_LIKE_SHAPES: Set[int] = {SHAPE_DEFAULTDICT, SHAPE_DICT, SHAPE_MAPPING, SHAPE_COUNTER}
|
|||
|
|
|||
|
|
|||
|
class ModelField(Representation):
|
|||
|
__slots__ = (
|
|||
|
'type_',
|
|||
|
'outer_type_',
|
|||
|
'annotation',
|
|||
|
'sub_fields',
|
|||
|
'sub_fields_mapping',
|
|||
|
'key_field',
|
|||
|
'validators',
|
|||
|
'pre_validators',
|
|||
|
'post_validators',
|
|||
|
'default',
|
|||
|
'default_factory',
|
|||
|
'required',
|
|||
|
'final',
|
|||
|
'model_config',
|
|||
|
'name',
|
|||
|
'alias',
|
|||
|
'has_alias',
|
|||
|
'field_info',
|
|||
|
'discriminator_key',
|
|||
|
'discriminator_alias',
|
|||
|
'validate_always',
|
|||
|
'allow_none',
|
|||
|
'shape',
|
|||
|
'class_validators',
|
|||
|
'parse_json',
|
|||
|
)
|
|||
|
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
*,
|
|||
|
name: str,
|
|||
|
type_: Type[Any],
|
|||
|
class_validators: Optional[Dict[str, Validator]],
|
|||
|
model_config: Type['BaseConfig'],
|
|||
|
default: Any = None,
|
|||
|
default_factory: Optional[NoArgAnyCallable] = None,
|
|||
|
required: 'BoolUndefined' = Undefined,
|
|||
|
final: bool = False,
|
|||
|
alias: Optional[str] = None,
|
|||
|
field_info: Optional[FieldInfo] = None,
|
|||
|
) -> None:
|
|||
|
self.name: str = name
|
|||
|
self.has_alias: bool = alias is not None
|
|||
|
self.alias: str = alias if alias is not None else name
|
|||
|
self.annotation = type_
|
|||
|
self.type_: Any = convert_generics(type_)
|
|||
|
self.outer_type_: Any = type_
|
|||
|
self.class_validators = class_validators or {}
|
|||
|
self.default: Any = default
|
|||
|
self.default_factory: Optional[NoArgAnyCallable] = default_factory
|
|||
|
self.required: 'BoolUndefined' = required
|
|||
|
self.final: bool = final
|
|||
|
self.model_config = model_config
|
|||
|
self.field_info: FieldInfo = field_info or FieldInfo(default)
|
|||
|
self.discriminator_key: Optional[str] = self.field_info.discriminator
|
|||
|
self.discriminator_alias: Optional[str] = self.discriminator_key
|
|||
|
|
|||
|
self.allow_none: bool = False
|
|||
|
self.validate_always: bool = False
|
|||
|
self.sub_fields: Optional[List[ModelField]] = None
|
|||
|
self.sub_fields_mapping: Optional[Dict[str, 'ModelField']] = None # used for discriminated union
|
|||
|
self.key_field: Optional[ModelField] = None
|
|||
|
self.validators: 'ValidatorsList' = []
|
|||
|
self.pre_validators: Optional['ValidatorsList'] = None
|
|||
|
self.post_validators: Optional['ValidatorsList'] = None
|
|||
|
self.parse_json: bool = False
|
|||
|
self.shape: int = SHAPE_SINGLETON
|
|||
|
self.model_config.prepare_field(self)
|
|||
|
self.prepare()
|
|||
|
|
|||
|
def get_default(self) -> Any:
|
|||
|
return smart_deepcopy(self.default) if self.default_factory is None else self.default_factory()
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def _get_field_info(
|
|||
|
field_name: str, annotation: Any, value: Any, config: Type['BaseConfig']
|
|||
|
) -> Tuple[FieldInfo, Any]:
|
|||
|
"""
|
|||
|
Get a FieldInfo from a root typing.Annotated annotation, value, or config default.
|
|||
|
|
|||
|
The FieldInfo may be set in typing.Annotated or the value, but not both. If neither contain
|
|||
|
a FieldInfo, a new one will be created using the config.
|
|||
|
|
|||
|
:param field_name: name of the field for use in error messages
|
|||
|
:param annotation: a type hint such as `str` or `Annotated[str, Field(..., min_length=5)]`
|
|||
|
:param value: the field's assigned value
|
|||
|
:param config: the model's config object
|
|||
|
:return: the FieldInfo contained in the `annotation`, the value, or a new one from the config.
|
|||
|
"""
|
|||
|
field_info_from_config = config.get_field_info(field_name)
|
|||
|
|
|||
|
field_info = None
|
|||
|
if get_origin(annotation) is Annotated:
|
|||
|
field_infos = [arg for arg in get_args(annotation)[1:] if isinstance(arg, FieldInfo)]
|
|||
|
if len(field_infos) > 1:
|
|||
|
raise ValueError(f'cannot specify multiple `Annotated` `Field`s for {field_name!r}')
|
|||
|
field_info = next(iter(field_infos), None)
|
|||
|
if field_info is not None:
|
|||
|
field_info = copy.copy(field_info)
|
|||
|
field_info.update_from_config(field_info_from_config)
|
|||
|
if field_info.default not in (Undefined, Required):
|
|||
|
raise ValueError(f'`Field` default cannot be set in `Annotated` for {field_name!r}')
|
|||
|
if value is not Undefined and value is not Required:
|
|||
|
# check also `Required` because of `validate_arguments` that sets `...` as default value
|
|||
|
field_info.default = value
|
|||
|
|
|||
|
if isinstance(value, FieldInfo):
|
|||
|
if field_info is not None:
|
|||
|
raise ValueError(f'cannot specify `Annotated` and value `Field`s together for {field_name!r}')
|
|||
|
field_info = value
|
|||
|
field_info.update_from_config(field_info_from_config)
|
|||
|
elif field_info is None:
|
|||
|
field_info = FieldInfo(value, **field_info_from_config)
|
|||
|
value = None if field_info.default_factory is not None else field_info.default
|
|||
|
field_info._validate()
|
|||
|
return field_info, value
|
|||
|
|
|||
|
@classmethod
|
|||
|
def infer(
|
|||
|
cls,
|
|||
|
*,
|
|||
|
name: str,
|
|||
|
value: Any,
|
|||
|
annotation: Any,
|
|||
|
class_validators: Optional[Dict[str, Validator]],
|
|||
|
config: Type['BaseConfig'],
|
|||
|
) -> 'ModelField':
|
|||
|
from .schema import get_annotation_from_field_info
|
|||
|
|
|||
|
field_info, value = cls._get_field_info(name, annotation, value, config)
|
|||
|
required: 'BoolUndefined' = Undefined
|
|||
|
if value is Required:
|
|||
|
required = True
|
|||
|
value = None
|
|||
|
elif value is not Undefined:
|
|||
|
required = False
|
|||
|
annotation = get_annotation_from_field_info(annotation, field_info, name, config.validate_assignment)
|
|||
|
|
|||
|
return cls(
|
|||
|
name=name,
|
|||
|
type_=annotation,
|
|||
|
alias=field_info.alias,
|
|||
|
class_validators=class_validators,
|
|||
|
default=value,
|
|||
|
default_factory=field_info.default_factory,
|
|||
|
required=required,
|
|||
|
model_config=config,
|
|||
|
field_info=field_info,
|
|||
|
)
|
|||
|
|
|||
|
def set_config(self, config: Type['BaseConfig']) -> None:
|
|||
|
self.model_config = config
|
|||
|
info_from_config = config.get_field_info(self.name)
|
|||
|
config.prepare_field(self)
|
|||
|
new_alias = info_from_config.get('alias')
|
|||
|
new_alias_priority = info_from_config.get('alias_priority') or 0
|
|||
|
if new_alias and new_alias_priority >= (self.field_info.alias_priority or 0):
|
|||
|
self.field_info.alias = new_alias
|
|||
|
self.field_info.alias_priority = new_alias_priority
|
|||
|
self.alias = new_alias
|
|||
|
new_exclude = info_from_config.get('exclude')
|
|||
|
if new_exclude is not None:
|
|||
|
self.field_info.exclude = ValueItems.merge(self.field_info.exclude, new_exclude)
|
|||
|
new_include = info_from_config.get('include')
|
|||
|
if new_include is not None:
|
|||
|
self.field_info.include = ValueItems.merge(self.field_info.include, new_include, intersect=True)
|
|||
|
|
|||
|
@property
|
|||
|
def alt_alias(self) -> bool:
|
|||
|
return self.name != self.alias
|
|||
|
|
|||
|
def prepare(self) -> None:
|
|||
|
"""
|
|||
|
Prepare the field but inspecting self.default, self.type_ etc.
|
|||
|
|
|||
|
Note: this method is **not** idempotent (because _type_analysis is not idempotent),
|
|||
|
e.g. calling it it multiple times may modify the field and configure it incorrectly.
|
|||
|
"""
|
|||
|
self._set_default_and_type()
|
|||
|
if self.type_.__class__ is ForwardRef or self.type_.__class__ is DeferredType:
|
|||
|
# self.type_ is currently a ForwardRef and there's nothing we can do now,
|
|||
|
# user will need to call model.update_forward_refs()
|
|||
|
return
|
|||
|
|
|||
|
self._type_analysis()
|
|||
|
if self.required is Undefined:
|
|||
|
self.required = True
|
|||
|
if self.default is Undefined and self.default_factory is None:
|
|||
|
self.default = None
|
|||
|
self.populate_validators()
|
|||
|
|
|||
|
def _set_default_and_type(self) -> None:
|
|||
|
"""
|
|||
|
Set the default value, infer the type if needed and check if `None` value is valid.
|
|||
|
"""
|
|||
|
if self.default_factory is not None:
|
|||
|
if self.type_ is Undefined:
|
|||
|
raise errors_.ConfigError(
|
|||
|
f'you need to set the type of field {self.name!r} when using `default_factory`'
|
|||
|
)
|
|||
|
return
|
|||
|
|
|||
|
default_value = self.get_default()
|
|||
|
|
|||
|
if default_value is not None and self.type_ is Undefined:
|
|||
|
self.type_ = default_value.__class__
|
|||
|
self.outer_type_ = self.type_
|
|||
|
self.annotation = self.type_
|
|||
|
|
|||
|
if self.type_ is Undefined:
|
|||
|
raise errors_.ConfigError(f'unable to infer type for attribute "{self.name}"')
|
|||
|
|
|||
|
if self.required is False and default_value is None:
|
|||
|
self.allow_none = True
|
|||
|
|
|||
|
def _type_analysis(self) -> None: # noqa: C901 (ignore complexity)
|
|||
|
# typing interface is horrible, we have to do some ugly checks
|
|||
|
if lenient_issubclass(self.type_, JsonWrapper):
|
|||
|
self.type_ = self.type_.inner_type
|
|||
|
self.parse_json = True
|
|||
|
elif lenient_issubclass(self.type_, Json):
|
|||
|
self.type_ = Any
|
|||
|
self.parse_json = True
|
|||
|
elif isinstance(self.type_, TypeVar):
|
|||
|
if self.type_.__bound__:
|
|||
|
self.type_ = self.type_.__bound__
|
|||
|
elif self.type_.__constraints__:
|
|||
|
self.type_ = Union[self.type_.__constraints__]
|
|||
|
else:
|
|||
|
self.type_ = Any
|
|||
|
elif is_new_type(self.type_):
|
|||
|
self.type_ = new_type_supertype(self.type_)
|
|||
|
|
|||
|
if self.type_ is Any or self.type_ is object:
|
|||
|
if self.required is Undefined:
|
|||
|
self.required = False
|
|||
|
self.allow_none = True
|
|||
|
return
|
|||
|
elif self.type_ is Pattern or self.type_ is re.Pattern:
|
|||
|
# python 3.7 only, Pattern is a typing object but without sub fields
|
|||
|
return
|
|||
|
elif is_literal_type(self.type_):
|
|||
|
return
|
|||
|
elif is_typeddict(self.type_):
|
|||
|
return
|
|||
|
|
|||
|
if is_finalvar(self.type_):
|
|||
|
self.final = True
|
|||
|
|
|||
|
if self.type_ is Final:
|
|||
|
self.type_ = Any
|
|||
|
else:
|
|||
|
self.type_ = get_args(self.type_)[0]
|
|||
|
|
|||
|
self._type_analysis()
|
|||
|
return
|
|||
|
|
|||
|
origin = get_origin(self.type_)
|
|||
|
|
|||
|
if origin is Annotated or is_typeddict_special(origin):
|
|||
|
self.type_ = get_args(self.type_)[0]
|
|||
|
self._type_analysis()
|
|||
|
return
|
|||
|
|
|||
|
if self.discriminator_key is not None and not is_union(origin):
|
|||
|
raise TypeError('`discriminator` can only be used with `Union` type with more than one variant')
|
|||
|
|
|||
|
# add extra check for `collections.abc.Hashable` for python 3.10+ where origin is not `None`
|
|||
|
if origin is None or origin is CollectionsHashable:
|
|||
|
# field is not "typing" object eg. Union, Dict, List etc.
|
|||
|
# allow None for virtual superclasses of NoneType, e.g. Hashable
|
|||
|
if isinstance(self.type_, type) and isinstance(None, self.type_):
|
|||
|
self.allow_none = True
|
|||
|
return
|
|||
|
elif origin is Callable:
|
|||
|
return
|
|||
|
elif is_union(origin):
|
|||
|
types_ = []
|
|||
|
for type_ in get_args(self.type_):
|
|||
|
if is_none_type(type_) or type_ is Any or type_ is object:
|
|||
|
if self.required is Undefined:
|
|||
|
self.required = False
|
|||
|
self.allow_none = True
|
|||
|
if is_none_type(type_):
|
|||
|
continue
|
|||
|
types_.append(type_)
|
|||
|
|
|||
|
if len(types_) == 1:
|
|||
|
# Optional[]
|
|||
|
self.type_ = types_[0]
|
|||
|
# this is the one case where the "outer type" isn't just the original type
|
|||
|
self.outer_type_ = self.type_
|
|||
|
# re-run to correctly interpret the new self.type_
|
|||
|
self._type_analysis()
|
|||
|
else:
|
|||
|
self.sub_fields = [self._create_sub_type(t, f'{self.name}_{display_as_type(t)}') for t in types_]
|
|||
|
|
|||
|
if self.discriminator_key is not None:
|
|||
|
self.prepare_discriminated_union_sub_fields()
|
|||
|
return
|
|||
|
elif issubclass(origin, Tuple): # type: ignore
|
|||
|
# origin == Tuple without item type
|
|||
|
args = get_args(self.type_)
|
|||
|
if not args: # plain tuple
|
|||
|
self.type_ = Any
|
|||
|
self.shape = SHAPE_TUPLE_ELLIPSIS
|
|||
|
elif len(args) == 2 and args[1] is Ellipsis: # e.g. Tuple[int, ...]
|
|||
|
self.type_ = args[0]
|
|||
|
self.shape = SHAPE_TUPLE_ELLIPSIS
|
|||
|
self.sub_fields = [self._create_sub_type(args[0], f'{self.name}_0')]
|
|||
|
elif args == ((),): # Tuple[()] means empty tuple
|
|||
|
self.shape = SHAPE_TUPLE
|
|||
|
self.type_ = Any
|
|||
|
self.sub_fields = []
|
|||
|
else:
|
|||
|
self.shape = SHAPE_TUPLE
|
|||
|
self.sub_fields = [self._create_sub_type(t, f'{self.name}_{i}') for i, t in enumerate(args)]
|
|||
|
return
|
|||
|
elif issubclass(origin, List):
|
|||
|
# Create self validators
|
|||
|
get_validators = getattr(self.type_, '__get_validators__', None)
|
|||
|
if get_validators:
|
|||
|
self.class_validators.update(
|
|||
|
{f'list_{i}': Validator(validator, pre=True) for i, validator in enumerate(get_validators())}
|
|||
|
)
|
|||
|
|
|||
|
self.type_ = get_args(self.type_)[0]
|
|||
|
self.shape = SHAPE_LIST
|
|||
|
elif issubclass(origin, Set):
|
|||
|
# Create self validators
|
|||
|
get_validators = getattr(self.type_, '__get_validators__', None)
|
|||
|
if get_validators:
|
|||
|
self.class_validators.update(
|
|||
|
{f'set_{i}': Validator(validator, pre=True) for i, validator in enumerate(get_validators())}
|
|||
|
)
|
|||
|
|
|||
|
self.type_ = get_args(self.type_)[0]
|
|||
|
self.shape = SHAPE_SET
|
|||
|
elif issubclass(origin, FrozenSet):
|
|||
|
# Create self validators
|
|||
|
get_validators = getattr(self.type_, '__get_validators__', None)
|
|||
|
if get_validators:
|
|||
|
self.class_validators.update(
|
|||
|
{f'frozenset_{i}': Validator(validator, pre=True) for i, validator in enumerate(get_validators())}
|
|||
|
)
|
|||
|
|
|||
|
self.type_ = get_args(self.type_)[0]
|
|||
|
self.shape = SHAPE_FROZENSET
|
|||
|
elif issubclass(origin, Deque):
|
|||
|
self.type_ = get_args(self.type_)[0]
|
|||
|
self.shape = SHAPE_DEQUE
|
|||
|
elif issubclass(origin, Sequence):
|
|||
|
self.type_ = get_args(self.type_)[0]
|
|||
|
self.shape = SHAPE_SEQUENCE
|
|||
|
# priority to most common mapping: dict
|
|||
|
elif origin is dict or origin is Dict:
|
|||
|
self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True)
|
|||
|
self.type_ = get_args(self.type_)[1]
|
|||
|
self.shape = SHAPE_DICT
|
|||
|
elif issubclass(origin, DefaultDict):
|
|||
|
self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True)
|
|||
|
self.type_ = get_args(self.type_)[1]
|
|||
|
self.shape = SHAPE_DEFAULTDICT
|
|||
|
elif issubclass(origin, Counter):
|
|||
|
self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True)
|
|||
|
self.type_ = int
|
|||
|
self.shape = SHAPE_COUNTER
|
|||
|
elif issubclass(origin, Mapping):
|
|||
|
self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True)
|
|||
|
self.type_ = get_args(self.type_)[1]
|
|||
|
self.shape = SHAPE_MAPPING
|
|||
|
# Equality check as almost everything inherits form Iterable, including str
|
|||
|
# check for Iterable and CollectionsIterable, as it could receive one even when declared with the other
|
|||
|
elif origin in {Iterable, CollectionsIterable}:
|
|||
|
self.type_ = get_args(self.type_)[0]
|
|||
|
self.shape = SHAPE_ITERABLE
|
|||
|
self.sub_fields = [self._create_sub_type(self.type_, f'{self.name}_type')]
|
|||
|
elif issubclass(origin, Type): # type: ignore
|
|||
|
return
|
|||
|
elif hasattr(origin, '__get_validators__') or self.model_config.arbitrary_types_allowed:
|
|||
|
# Is a Pydantic-compatible generic that handles itself
|
|||
|
# or we have arbitrary_types_allowed = True
|
|||
|
self.shape = SHAPE_GENERIC
|
|||
|
self.sub_fields = [self._create_sub_type(t, f'{self.name}_{i}') for i, t in enumerate(get_args(self.type_))]
|
|||
|
self.type_ = origin
|
|||
|
return
|
|||
|
else:
|
|||
|
raise TypeError(f'Fields of type "{origin}" are not supported.')
|
|||
|
|
|||
|
# type_ has been refined eg. as the type of a List and sub_fields needs to be populated
|
|||
|
self.sub_fields = [self._create_sub_type(self.type_, '_' + self.name)]
|
|||
|
|
|||
|
def prepare_discriminated_union_sub_fields(self) -> None:
|
|||
|
"""
|
|||
|
Prepare the mapping <discriminator key> -> <ModelField> and update `sub_fields`
|
|||
|
Note that this process can be aborted if a `ForwardRef` is encountered
|
|||
|
"""
|
|||
|
assert self.discriminator_key is not None
|
|||
|
|
|||
|
if self.type_.__class__ is DeferredType:
|
|||
|
return
|
|||
|
|
|||
|
assert self.sub_fields is not None
|
|||
|
sub_fields_mapping: Dict[str, 'ModelField'] = {}
|
|||
|
all_aliases: Set[str] = set()
|
|||
|
|
|||
|
for sub_field in self.sub_fields:
|
|||
|
t = sub_field.type_
|
|||
|
if t.__class__ is ForwardRef:
|
|||
|
# Stopping everything...will need to call `update_forward_refs`
|
|||
|
return
|
|||
|
|
|||
|
alias, discriminator_values = get_discriminator_alias_and_values(t, self.discriminator_key)
|
|||
|
all_aliases.add(alias)
|
|||
|
for discriminator_value in discriminator_values:
|
|||
|
sub_fields_mapping[discriminator_value] = sub_field
|
|||
|
|
|||
|
self.sub_fields_mapping = sub_fields_mapping
|
|||
|
self.discriminator_alias = get_unique_discriminator_alias(all_aliases, self.discriminator_key)
|
|||
|
|
|||
|
def _create_sub_type(self, type_: Type[Any], name: str, *, for_keys: bool = False) -> 'ModelField':
|
|||
|
if for_keys:
|
|||
|
class_validators = None
|
|||
|
else:
|
|||
|
# validators for sub items should not have `each_item` as we want to check only the first sublevel
|
|||
|
class_validators = {
|
|||
|
k: Validator(
|
|||
|
func=v.func,
|
|||
|
pre=v.pre,
|
|||
|
each_item=False,
|
|||
|
always=v.always,
|
|||
|
check_fields=v.check_fields,
|
|||
|
skip_on_failure=v.skip_on_failure,
|
|||
|
)
|
|||
|
for k, v in self.class_validators.items()
|
|||
|
if v.each_item
|
|||
|
}
|
|||
|
|
|||
|
field_info, _ = self._get_field_info(name, type_, None, self.model_config)
|
|||
|
|
|||
|
return self.__class__(
|
|||
|
type_=type_,
|
|||
|
name=name,
|
|||
|
class_validators=class_validators,
|
|||
|
model_config=self.model_config,
|
|||
|
field_info=field_info,
|
|||
|
)
|
|||
|
|
|||
|
def populate_validators(self) -> None:
|
|||
|
"""
|
|||
|
Prepare self.pre_validators, self.validators, and self.post_validators based on self.type_'s __get_validators__
|
|||
|
and class validators. This method should be idempotent, e.g. it should be safe to call multiple times
|
|||
|
without mis-configuring the field.
|
|||
|
"""
|
|||
|
self.validate_always = getattr(self.type_, 'validate_always', False) or any(
|
|||
|
v.always for v in self.class_validators.values()
|
|||
|
)
|
|||
|
|
|||
|
class_validators_ = self.class_validators.values()
|
|||
|
if not self.sub_fields or self.shape == SHAPE_GENERIC:
|
|||
|
get_validators = getattr(self.type_, '__get_validators__', None)
|
|||
|
v_funcs = (
|
|||
|
*[v.func for v in class_validators_ if v.each_item and v.pre],
|
|||
|
*(get_validators() if get_validators else list(find_validators(self.type_, self.model_config))),
|
|||
|
*[v.func for v in class_validators_ if v.each_item and not v.pre],
|
|||
|
)
|
|||
|
self.validators = prep_validators(v_funcs)
|
|||
|
|
|||
|
self.pre_validators = []
|
|||
|
self.post_validators = []
|
|||
|
|
|||
|
if self.field_info and self.field_info.const:
|
|||
|
self.post_validators.append(make_generic_validator(constant_validator))
|
|||
|
|
|||
|
if class_validators_:
|
|||
|
self.pre_validators += prep_validators(v.func for v in class_validators_ if not v.each_item and v.pre)
|
|||
|
self.post_validators += prep_validators(v.func for v in class_validators_ if not v.each_item and not v.pre)
|
|||
|
|
|||
|
if self.parse_json:
|
|||
|
self.pre_validators.append(make_generic_validator(validate_json))
|
|||
|
|
|||
|
self.pre_validators = self.pre_validators or None
|
|||
|
self.post_validators = self.post_validators or None
|
|||
|
|
|||
|
def validate(
|
|||
|
self, v: Any, values: Dict[str, Any], *, loc: 'LocStr', cls: Optional['ModelOrDc'] = None
|
|||
|
) -> 'ValidateReturn':
|
|||
|
assert self.type_.__class__ is not DeferredType
|
|||
|
|
|||
|
if self.type_.__class__ is ForwardRef:
|
|||
|
assert cls is not None
|
|||
|
raise ConfigError(
|
|||
|
f'field "{self.name}" not yet prepared so type is still a ForwardRef, '
|
|||
|
f'you might need to call {cls.__name__}.update_forward_refs().'
|
|||
|
)
|
|||
|
|
|||
|
errors: Optional['ErrorList']
|
|||
|
if self.pre_validators:
|
|||
|
v, errors = self._apply_validators(v, values, loc, cls, self.pre_validators)
|
|||
|
if errors:
|
|||
|
return v, errors
|
|||
|
|
|||
|
if v is None:
|
|||
|
if is_none_type(self.type_):
|
|||
|
# keep validating
|
|||
|
pass
|
|||
|
elif self.allow_none:
|
|||
|
if self.post_validators:
|
|||
|
return self._apply_validators(v, values, loc, cls, self.post_validators)
|
|||
|
else:
|
|||
|
return None, None
|
|||
|
else:
|
|||
|
return v, ErrorWrapper(NoneIsNotAllowedError(), loc)
|
|||
|
|
|||
|
if self.shape == SHAPE_SINGLETON:
|
|||
|
v, errors = self._validate_singleton(v, values, loc, cls)
|
|||
|
elif self.shape in MAPPING_LIKE_SHAPES:
|
|||
|
v, errors = self._validate_mapping_like(v, values, loc, cls)
|
|||
|
elif self.shape == SHAPE_TUPLE:
|
|||
|
v, errors = self._validate_tuple(v, values, loc, cls)
|
|||
|
elif self.shape == SHAPE_ITERABLE:
|
|||
|
v, errors = self._validate_iterable(v, values, loc, cls)
|
|||
|
elif self.shape == SHAPE_GENERIC:
|
|||
|
v, errors = self._apply_validators(v, values, loc, cls, self.validators)
|
|||
|
else:
|
|||
|
# sequence, list, set, generator, tuple with ellipsis, frozen set
|
|||
|
v, errors = self._validate_sequence_like(v, values, loc, cls)
|
|||
|
|
|||
|
if not errors and self.post_validators:
|
|||
|
v, errors = self._apply_validators(v, values, loc, cls, self.post_validators)
|
|||
|
return v, errors
|
|||
|
|
|||
|
def _validate_sequence_like( # noqa: C901 (ignore complexity)
|
|||
|
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc']
|
|||
|
) -> 'ValidateReturn':
|
|||
|
"""
|
|||
|
Validate sequence-like containers: lists, tuples, sets and generators
|
|||
|
Note that large if-else blocks are necessary to enable Cython
|
|||
|
optimization, which is why we disable the complexity check above.
|
|||
|
"""
|
|||
|
if not sequence_like(v):
|
|||
|
e: errors_.PydanticTypeError
|
|||
|
if self.shape == SHAPE_LIST:
|
|||
|
e = errors_.ListError()
|
|||
|
elif self.shape in (SHAPE_TUPLE, SHAPE_TUPLE_ELLIPSIS):
|
|||
|
e = errors_.TupleError()
|
|||
|
elif self.shape == SHAPE_SET:
|
|||
|
e = errors_.SetError()
|
|||
|
elif self.shape == SHAPE_FROZENSET:
|
|||
|
e = errors_.FrozenSetError()
|
|||
|
else:
|
|||
|
e = errors_.SequenceError()
|
|||
|
return v, ErrorWrapper(e, loc)
|
|||
|
|
|||
|
loc = loc if isinstance(loc, tuple) else (loc,)
|
|||
|
result = []
|
|||
|
errors: List[ErrorList] = []
|
|||
|
for i, v_ in enumerate(v):
|
|||
|
v_loc = *loc, i
|
|||
|
r, ee = self._validate_singleton(v_, values, v_loc, cls)
|
|||
|
if ee:
|
|||
|
errors.append(ee)
|
|||
|
else:
|
|||
|
result.append(r)
|
|||
|
|
|||
|
if errors:
|
|||
|
return v, errors
|
|||
|
|
|||
|
converted: Union[List[Any], Set[Any], FrozenSet[Any], Tuple[Any, ...], Iterator[Any], Deque[Any]] = result
|
|||
|
|
|||
|
if self.shape == SHAPE_SET:
|
|||
|
converted = set(result)
|
|||
|
elif self.shape == SHAPE_FROZENSET:
|
|||
|
converted = frozenset(result)
|
|||
|
elif self.shape == SHAPE_TUPLE_ELLIPSIS:
|
|||
|
converted = tuple(result)
|
|||
|
elif self.shape == SHAPE_DEQUE:
|
|||
|
converted = deque(result, maxlen=getattr(v, 'maxlen', None))
|
|||
|
elif self.shape == SHAPE_SEQUENCE:
|
|||
|
if isinstance(v, tuple):
|
|||
|
converted = tuple(result)
|
|||
|
elif isinstance(v, set):
|
|||
|
converted = set(result)
|
|||
|
elif isinstance(v, Generator):
|
|||
|
converted = iter(result)
|
|||
|
elif isinstance(v, deque):
|
|||
|
converted = deque(result, maxlen=getattr(v, 'maxlen', None))
|
|||
|
return converted, None
|
|||
|
|
|||
|
def _validate_iterable(
|
|||
|
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc']
|
|||
|
) -> 'ValidateReturn':
|
|||
|
"""
|
|||
|
Validate Iterables.
|
|||
|
|
|||
|
This intentionally doesn't validate values to allow infinite generators.
|
|||
|
"""
|
|||
|
|
|||
|
try:
|
|||
|
iterable = iter(v)
|
|||
|
except TypeError:
|
|||
|
return v, ErrorWrapper(errors_.IterableError(), loc)
|
|||
|
return iterable, None
|
|||
|
|
|||
|
def _validate_tuple(
|
|||
|
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc']
|
|||
|
) -> 'ValidateReturn':
|
|||
|
e: Optional[Exception] = None
|
|||
|
if not sequence_like(v):
|
|||
|
e = errors_.TupleError()
|
|||
|
else:
|
|||
|
actual_length, expected_length = len(v), len(self.sub_fields) # type: ignore
|
|||
|
if actual_length != expected_length:
|
|||
|
e = errors_.TupleLengthError(actual_length=actual_length, expected_length=expected_length)
|
|||
|
|
|||
|
if e:
|
|||
|
return v, ErrorWrapper(e, loc)
|
|||
|
|
|||
|
loc = loc if isinstance(loc, tuple) else (loc,)
|
|||
|
result = []
|
|||
|
errors: List[ErrorList] = []
|
|||
|
for i, (v_, field) in enumerate(zip(v, self.sub_fields)): # type: ignore
|
|||
|
v_loc = *loc, i
|
|||
|
r, ee = field.validate(v_, values, loc=v_loc, cls=cls)
|
|||
|
if ee:
|
|||
|
errors.append(ee)
|
|||
|
else:
|
|||
|
result.append(r)
|
|||
|
|
|||
|
if errors:
|
|||
|
return v, errors
|
|||
|
else:
|
|||
|
return tuple(result), None
|
|||
|
|
|||
|
def _validate_mapping_like(
|
|||
|
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc']
|
|||
|
) -> 'ValidateReturn':
|
|||
|
try:
|
|||
|
v_iter = dict_validator(v)
|
|||
|
except TypeError as exc:
|
|||
|
return v, ErrorWrapper(exc, loc)
|
|||
|
|
|||
|
loc = loc if isinstance(loc, tuple) else (loc,)
|
|||
|
result, errors = {}, []
|
|||
|
for k, v_ in v_iter.items():
|
|||
|
v_loc = *loc, '__key__'
|
|||
|
key_result, key_errors = self.key_field.validate(k, values, loc=v_loc, cls=cls) # type: ignore
|
|||
|
if key_errors:
|
|||
|
errors.append(key_errors)
|
|||
|
continue
|
|||
|
|
|||
|
v_loc = *loc, k
|
|||
|
value_result, value_errors = self._validate_singleton(v_, values, v_loc, cls)
|
|||
|
if value_errors:
|
|||
|
errors.append(value_errors)
|
|||
|
continue
|
|||
|
|
|||
|
result[key_result] = value_result
|
|||
|
if errors:
|
|||
|
return v, errors
|
|||
|
elif self.shape == SHAPE_DICT:
|
|||
|
return result, None
|
|||
|
elif self.shape == SHAPE_DEFAULTDICT:
|
|||
|
return defaultdict(self.type_, result), None
|
|||
|
elif self.shape == SHAPE_COUNTER:
|
|||
|
return CollectionCounter(result), None
|
|||
|
else:
|
|||
|
return self._get_mapping_value(v, result), None
|
|||
|
|
|||
|
def _get_mapping_value(self, original: T, converted: Dict[Any, Any]) -> Union[T, Dict[Any, Any]]:
|
|||
|
"""
|
|||
|
When type is `Mapping[KT, KV]` (or another unsupported mapping), we try to avoid
|
|||
|
coercing to `dict` unwillingly.
|
|||
|
"""
|
|||
|
original_cls = original.__class__
|
|||
|
|
|||
|
if original_cls == dict or original_cls == Dict:
|
|||
|
return converted
|
|||
|
elif original_cls in {defaultdict, DefaultDict}:
|
|||
|
return defaultdict(self.type_, converted)
|
|||
|
else:
|
|||
|
try:
|
|||
|
# Counter, OrderedDict, UserDict, ...
|
|||
|
return original_cls(converted) # type: ignore
|
|||
|
except TypeError:
|
|||
|
raise RuntimeError(f'Could not convert dictionary to {original_cls.__name__!r}') from None
|
|||
|
|
|||
|
def _validate_singleton(
|
|||
|
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc']
|
|||
|
) -> 'ValidateReturn':
|
|||
|
if self.sub_fields:
|
|||
|
if self.discriminator_key is not None:
|
|||
|
return self._validate_discriminated_union(v, values, loc, cls)
|
|||
|
|
|||
|
errors = []
|
|||
|
|
|||
|
if self.model_config.smart_union and is_union(get_origin(self.type_)):
|
|||
|
# 1st pass: check if the value is an exact instance of one of the Union types
|
|||
|
# (e.g. to avoid coercing a bool into an int)
|
|||
|
for field in self.sub_fields:
|
|||
|
if v.__class__ is field.outer_type_:
|
|||
|
return v, None
|
|||
|
|
|||
|
# 2nd pass: check if the value is an instance of any subclass of the Union types
|
|||
|
for field in self.sub_fields:
|
|||
|
# This whole logic will be improved later on to support more complex `isinstance` checks
|
|||
|
# It will probably be done once a strict mode is added and be something like:
|
|||
|
# ```
|
|||
|
# value, error = field.validate(v, values, strict=True)
|
|||
|
# if error is None:
|
|||
|
# return value, None
|
|||
|
# ```
|
|||
|
try:
|
|||
|
if isinstance(v, field.outer_type_):
|
|||
|
return v, None
|
|||
|
except TypeError:
|
|||
|
# compound type
|
|||
|
if lenient_isinstance(v, get_origin(field.outer_type_)):
|
|||
|
value, error = field.validate(v, values, loc=loc, cls=cls)
|
|||
|
if not error:
|
|||
|
return value, None
|
|||
|
|
|||
|
# 1st pass by default or 3rd pass with `smart_union` enabled:
|
|||
|
# check if the value can be coerced into one of the Union types
|
|||
|
for field in self.sub_fields:
|
|||
|
value, error = field.validate(v, values, loc=loc, cls=cls)
|
|||
|
if error:
|
|||
|
errors.append(error)
|
|||
|
else:
|
|||
|
return value, None
|
|||
|
return v, errors
|
|||
|
else:
|
|||
|
return self._apply_validators(v, values, loc, cls, self.validators)
|
|||
|
|
|||
|
def _validate_discriminated_union(
|
|||
|
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc']
|
|||
|
) -> 'ValidateReturn':
|
|||
|
assert self.discriminator_key is not None
|
|||
|
assert self.discriminator_alias is not None
|
|||
|
|
|||
|
try:
|
|||
|
try:
|
|||
|
discriminator_value = v[self.discriminator_alias]
|
|||
|
except KeyError:
|
|||
|
if self.model_config.allow_population_by_field_name:
|
|||
|
discriminator_value = v[self.discriminator_key]
|
|||
|
else:
|
|||
|
raise
|
|||
|
except KeyError:
|
|||
|
return v, ErrorWrapper(MissingDiscriminator(discriminator_key=self.discriminator_key), loc)
|
|||
|
except TypeError:
|
|||
|
try:
|
|||
|
# BaseModel or dataclass
|
|||
|
discriminator_value = getattr(v, self.discriminator_key)
|
|||
|
except (AttributeError, TypeError):
|
|||
|
return v, ErrorWrapper(MissingDiscriminator(discriminator_key=self.discriminator_key), loc)
|
|||
|
|
|||
|
if self.sub_fields_mapping is None:
|
|||
|
assert cls is not None
|
|||
|
raise ConfigError(
|
|||
|
f'field "{self.name}" not yet prepared so type is still a ForwardRef, '
|
|||
|
f'you might need to call {cls.__name__}.update_forward_refs().'
|
|||
|
)
|
|||
|
|
|||
|
try:
|
|||
|
sub_field = self.sub_fields_mapping[discriminator_value]
|
|||
|
except (KeyError, TypeError):
|
|||
|
# KeyError: `discriminator_value` is not in the dictionary.
|
|||
|
# TypeError: `discriminator_value` is unhashable.
|
|||
|
assert self.sub_fields_mapping is not None
|
|||
|
return v, ErrorWrapper(
|
|||
|
InvalidDiscriminator(
|
|||
|
discriminator_key=self.discriminator_key,
|
|||
|
discriminator_value=discriminator_value,
|
|||
|
allowed_values=list(self.sub_fields_mapping),
|
|||
|
),
|
|||
|
loc,
|
|||
|
)
|
|||
|
else:
|
|||
|
if not isinstance(loc, tuple):
|
|||
|
loc = (loc,)
|
|||
|
return sub_field.validate(v, values, loc=(*loc, display_as_type(sub_field.type_)), cls=cls)
|
|||
|
|
|||
|
def _apply_validators(
|
|||
|
self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'], validators: 'ValidatorsList'
|
|||
|
) -> 'ValidateReturn':
|
|||
|
for validator in validators:
|
|||
|
try:
|
|||
|
v = validator(cls, v, values, self, self.model_config)
|
|||
|
except (ValueError, TypeError, AssertionError) as exc:
|
|||
|
return v, ErrorWrapper(exc, loc)
|
|||
|
return v, None
|
|||
|
|
|||
|
def is_complex(self) -> bool:
|
|||
|
"""
|
|||
|
Whether the field is "complex" eg. env variables should be parsed as JSON.
|
|||
|
"""
|
|||
|
from .main import BaseModel
|
|||
|
|
|||
|
return (
|
|||
|
self.shape != SHAPE_SINGLETON
|
|||
|
or hasattr(self.type_, '__pydantic_model__')
|
|||
|
or lenient_issubclass(self.type_, (BaseModel, list, set, frozenset, dict))
|
|||
|
)
|
|||
|
|
|||
|
def _type_display(self) -> PyObjectStr:
|
|||
|
t = display_as_type(self.type_)
|
|||
|
|
|||
|
if self.shape in MAPPING_LIKE_SHAPES:
|
|||
|
t = f'Mapping[{display_as_type(self.key_field.type_)}, {t}]' # type: ignore
|
|||
|
elif self.shape == SHAPE_TUPLE:
|
|||
|
t = 'Tuple[{}]'.format(', '.join(display_as_type(f.type_) for f in self.sub_fields)) # type: ignore
|
|||
|
elif self.shape == SHAPE_GENERIC:
|
|||
|
assert self.sub_fields
|
|||
|
t = '{}[{}]'.format(
|
|||
|
display_as_type(self.type_), ', '.join(display_as_type(f.type_) for f in self.sub_fields)
|
|||
|
)
|
|||
|
elif self.shape != SHAPE_SINGLETON:
|
|||
|
t = SHAPE_NAME_LOOKUP[self.shape].format(t)
|
|||
|
|
|||
|
if self.allow_none and (self.shape != SHAPE_SINGLETON or not self.sub_fields):
|
|||
|
t = f'Optional[{t}]'
|
|||
|
return PyObjectStr(t)
|
|||
|
|
|||
|
def __repr_args__(self) -> 'ReprArgs':
|
|||
|
args = [('name', self.name), ('type', self._type_display()), ('required', self.required)]
|
|||
|
|
|||
|
if not self.required:
|
|||
|
if self.default_factory is not None:
|
|||
|
args.append(('default_factory', f'<function {self.default_factory.__name__}>'))
|
|||
|
else:
|
|||
|
args.append(('default', self.default))
|
|||
|
|
|||
|
if self.alt_alias:
|
|||
|
args.append(('alias', self.alias))
|
|||
|
return args
|
|||
|
|
|||
|
|
|||
|
class ModelPrivateAttr(Representation):
|
|||
|
__slots__ = ('default', 'default_factory')
|
|||
|
|
|||
|
def __init__(self, default: Any = Undefined, *, default_factory: Optional[NoArgAnyCallable] = None) -> None:
|
|||
|
self.default = default
|
|||
|
self.default_factory = default_factory
|
|||
|
|
|||
|
def get_default(self) -> Any:
|
|||
|
return smart_deepcopy(self.default) if self.default_factory is None else self.default_factory()
|
|||
|
|
|||
|
def __eq__(self, other: Any) -> bool:
|
|||
|
return isinstance(other, self.__class__) and (self.default, self.default_factory) == (
|
|||
|
other.default,
|
|||
|
other.default_factory,
|
|||
|
)
|
|||
|
|
|||
|
|
|||
|
def PrivateAttr(
|
|||
|
default: Any = Undefined,
|
|||
|
*,
|
|||
|
default_factory: Optional[NoArgAnyCallable] = None,
|
|||
|
) -> Any:
|
|||
|
"""
|
|||
|
Indicates that attribute is only used internally and never mixed with regular fields.
|
|||
|
|
|||
|
Types or values of private attrs are not checked by pydantic and it's up to you to keep them relevant.
|
|||
|
|
|||
|
Private attrs are stored in model __slots__.
|
|||
|
|
|||
|
:param default: the attribute’s default value
|
|||
|
:param default_factory: callable that will be called when a default value is needed for this attribute
|
|||
|
If both `default` and `default_factory` are set, an error is raised.
|
|||
|
"""
|
|||
|
if default is not Undefined and default_factory is not None:
|
|||
|
raise ValueError('cannot specify both default and default_factory')
|
|||
|
|
|||
|
return ModelPrivateAttr(
|
|||
|
default,
|
|||
|
default_factory=default_factory,
|
|||
|
)
|
|||
|
|
|||
|
|
|||
|
class DeferredType:
|
|||
|
"""
|
|||
|
Used to postpone field preparation, while creating recursive generic models.
|
|||
|
"""
|
|||
|
|
|||
|
|
|||
|
def is_finalvar_with_default_val(type_: Type[Any], val: Any) -> bool:
|
|||
|
return is_finalvar(type_) and val is not Undefined and not isinstance(val, FieldInfo)
|