ai-content-maker/.venv/Lib/site-packages/scipy/integrate/tests/test_tanhsinh.py

944 lines
33 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
# mypy: disable-error-code="attr-defined"
import pytest
import numpy as np
from numpy.testing import assert_allclose, assert_equal
import scipy._lib._elementwise_iterative_method as eim
from scipy import special, stats
from scipy.integrate import quad_vec
from scipy.integrate._tanhsinh import _tanhsinh, _pair_cache, _nsum
from scipy.stats._discrete_distns import _gen_harmonic_gt1
class TestTanhSinh:
# Test problems from [1] Section 6
def f1(self, t):
return t * np.log(1 + t)
f1.ref = 0.25
f1.b = 1
def f2(self, t):
return t ** 2 * np.arctan(t)
f2.ref = (np.pi - 2 + 2 * np.log(2)) / 12
f2.b = 1
def f3(self, t):
return np.exp(t) * np.cos(t)
f3.ref = (np.exp(np.pi / 2) - 1) / 2
f3.b = np.pi / 2
def f4(self, t):
a = np.sqrt(2 + t ** 2)
return np.arctan(a) / ((1 + t ** 2) * a)
f4.ref = 5 * np.pi ** 2 / 96
f4.b = 1
def f5(self, t):
return np.sqrt(t) * np.log(t)
f5.ref = -4 / 9
f5.b = 1
def f6(self, t):
return np.sqrt(1 - t ** 2)
f6.ref = np.pi / 4
f6.b = 1
def f7(self, t):
return np.sqrt(t) / np.sqrt(1 - t ** 2)
f7.ref = 2 * np.sqrt(np.pi) * special.gamma(3 / 4) / special.gamma(1 / 4)
f7.b = 1
def f8(self, t):
return np.log(t) ** 2
f8.ref = 2
f8.b = 1
def f9(self, t):
return np.log(np.cos(t))
f9.ref = -np.pi * np.log(2) / 2
f9.b = np.pi / 2
def f10(self, t):
return np.sqrt(np.tan(t))
f10.ref = np.pi * np.sqrt(2) / 2
f10.b = np.pi / 2
def f11(self, t):
return 1 / (1 + t ** 2)
f11.ref = np.pi / 2
f11.b = np.inf
def f12(self, t):
return np.exp(-t) / np.sqrt(t)
f12.ref = np.sqrt(np.pi)
f12.b = np.inf
def f13(self, t):
return np.exp(-t ** 2 / 2)
f13.ref = np.sqrt(np.pi / 2)
f13.b = np.inf
def f14(self, t):
return np.exp(-t) * np.cos(t)
f14.ref = 0.5
f14.b = np.inf
def f15(self, t):
return np.sin(t) / t
f15.ref = np.pi / 2
f15.b = np.inf
def error(self, res, ref, log=False):
err = abs(res - ref)
if not log:
return err
with np.errstate(divide='ignore'):
return np.log10(err)
def test_input_validation(self):
f = self.f1
message = '`f` must be callable.'
with pytest.raises(ValueError, match=message):
_tanhsinh(42, 0, f.b)
message = '...must be True or False.'
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, log=2)
message = '...must be real numbers.'
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 1+1j, f.b)
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, atol='ekki')
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, rtol=pytest)
message = '...must be non-negative and finite.'
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, rtol=-1)
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, atol=np.inf)
message = '...may not be positive infinity.'
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, rtol=np.inf, log=True)
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, atol=np.inf, log=True)
message = '...must be integers.'
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, maxlevel=object())
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, maxfun=1+1j)
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, minlevel="migratory coconut")
message = '...must be non-negative.'
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, maxlevel=-1)
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, maxfun=-1)
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, minlevel=-1)
message = '...must be True or False.'
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, preserve_shape=2)
message = '...must be callable.'
with pytest.raises(ValueError, match=message):
_tanhsinh(f, 0, f.b, callback='elderberry')
@pytest.mark.parametrize("limits, ref", [
[(0, np.inf), 0.5], # b infinite
[(-np.inf, 0), 0.5], # a infinite
[(-np.inf, np.inf), 1], # a and b infinite
[(np.inf, -np.inf), -1], # flipped limits
[(1, -1), stats.norm.cdf(-1) - stats.norm.cdf(1)], # flipped limits
])
def test_integral_transforms(self, limits, ref):
# Check that the integral transforms are behaving for both normal and
# log integration
dist = stats.norm()
res = _tanhsinh(dist.pdf, *limits)
assert_allclose(res.integral, ref)
logres = _tanhsinh(dist.logpdf, *limits, log=True)
assert_allclose(np.exp(logres.integral), ref)
# Transformation should not make the result complex unnecessarily
assert (np.issubdtype(logres.integral.dtype, np.floating) if ref > 0
else np.issubdtype(logres.integral.dtype, np.complexfloating))
assert_allclose(np.exp(logres.error), res.error, atol=1e-16)
# 15 skipped intentionally; it's very difficult numerically
@pytest.mark.parametrize('f_number', range(1, 15))
def test_basic(self, f_number):
f = getattr(self, f"f{f_number}")
rtol = 2e-8
res = _tanhsinh(f, 0, f.b, rtol=rtol)
assert_allclose(res.integral, f.ref, rtol=rtol)
if f_number not in {14}: # mildly underestimates error here
true_error = abs(self.error(res.integral, f.ref)/res.integral)
assert true_error < res.error
if f_number in {7, 10, 12}: # succeeds, but doesn't know it
return
assert res.success
assert res.status == 0
@pytest.mark.parametrize('ref', (0.5, [0.4, 0.6]))
@pytest.mark.parametrize('case', stats._distr_params.distcont)
def test_accuracy(self, ref, case):
distname, params = case
if distname in {'dgamma', 'dweibull', 'laplace', 'kstwo'}:
# should split up interval at first-derivative discontinuity
pytest.skip('tanh-sinh is not great for non-smooth integrands')
dist = getattr(stats, distname)(*params)
x = dist.interval(ref)
res = _tanhsinh(dist.pdf, *x)
assert_allclose(res.integral, ref)
@pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
def test_vectorization(self, shape):
# Test for correct functionality, output shapes, and dtypes for various
# input shapes.
rng = np.random.default_rng(82456839535679456794)
a = rng.random(shape)
b = rng.random(shape)
p = rng.random(shape)
n = np.prod(shape)
def f(x, p):
f.ncall += 1
f.feval += 1 if (x.size == n or x.ndim <=1) else x.shape[-1]
return x**p
f.ncall = 0
f.feval = 0
@np.vectorize
def _tanhsinh_single(a, b, p):
return _tanhsinh(lambda x: x**p, a, b)
res = _tanhsinh(f, a, b, args=(p,))
refs = _tanhsinh_single(a, b, p).ravel()
attrs = ['integral', 'error', 'success', 'status', 'nfev', 'maxlevel']
for attr in attrs:
ref_attr = [getattr(ref, attr) for ref in refs]
res_attr = getattr(res, attr)
assert_allclose(res_attr.ravel(), ref_attr, rtol=1e-15)
assert_equal(res_attr.shape, shape)
assert np.issubdtype(res.success.dtype, np.bool_)
assert np.issubdtype(res.status.dtype, np.integer)
assert np.issubdtype(res.nfev.dtype, np.integer)
assert np.issubdtype(res.maxlevel.dtype, np.integer)
assert_equal(np.max(res.nfev), f.feval)
# maxlevel = 2 -> 3 function calls (2 initialization, 1 work)
assert np.max(res.maxlevel) >= 2
assert_equal(np.max(res.maxlevel), f.ncall)
def test_flags(self):
# Test cases that should produce different status flags; show that all
# can be produced simultaneously.
def f(xs, js):
f.nit += 1
funcs = [lambda x: np.exp(-x**2), # converges
lambda x: np.exp(x), # reaches maxiter due to order=2
lambda x: np.full_like(x, np.nan)[()]] # stops due to NaN
res = [funcs[j](x) for x, j in zip(xs, js.ravel())]
return res
f.nit = 0
args = (np.arange(3, dtype=np.int64),)
res = _tanhsinh(f, [np.inf]*3, [-np.inf]*3, maxlevel=5, args=args)
ref_flags = np.array([0, -2, -3])
assert_equal(res.status, ref_flags)
def test_flags_preserve_shape(self):
# Same test as above but using `preserve_shape` option to simplify.
def f(x):
return [np.exp(-x[0]**2), # converges
np.exp(x[1]), # reaches maxiter due to order=2
np.full_like(x[2], np.nan)[()]] # stops due to NaN
res = _tanhsinh(f, [np.inf]*3, [-np.inf]*3, maxlevel=5, preserve_shape=True)
ref_flags = np.array([0, -2, -3])
assert_equal(res.status, ref_flags)
def test_preserve_shape(self):
# Test `preserve_shape` option
def f(x):
return np.asarray([[x, np.sin(10 * x)],
[np.cos(30 * x), x * np.sin(100 * x)]])
ref = quad_vec(f, 0, 1)
res = _tanhsinh(f, 0, 1, preserve_shape=True)
assert_allclose(res.integral, ref[0])
def test_convergence(self):
# demonstrate that number of accurate digits doubles each iteration
f = self.f1
last_logerr = 0
for i in range(4):
res = _tanhsinh(f, 0, f.b, minlevel=0, maxlevel=i)
logerr = self.error(res.integral, f.ref, log=True)
assert (logerr < last_logerr * 2 or logerr < -15.5)
last_logerr = logerr
def test_options_and_result_attributes(self):
# demonstrate that options are behaving as advertised and status
# messages are as intended
def f(x):
f.calls += 1
f.feval += np.size(x)
return self.f2(x)
f.ref = self.f2.ref
f.b = self.f2.b
default_rtol = 1e-12
default_atol = f.ref * default_rtol # effective default absolute tol
# Test default options
f.feval, f.calls = 0, 0
ref = _tanhsinh(f, 0, f.b)
assert self.error(ref.integral, f.ref) < ref.error < default_atol
assert ref.nfev == f.feval
ref.calls = f.calls # reference number of function calls
assert ref.success
assert ref.status == 0
# Test `maxlevel` equal to required max level
# We should get all the same results
f.feval, f.calls = 0, 0
maxlevel = ref.maxlevel
res = _tanhsinh(f, 0, f.b, maxlevel=maxlevel)
res.calls = f.calls
assert res == ref
# Now reduce the maximum level. We won't meet tolerances.
f.feval, f.calls = 0, 0
maxlevel -= 1
assert maxlevel >= 2 # can't compare errors otherwise
res = _tanhsinh(f, 0, f.b, maxlevel=maxlevel)
assert self.error(res.integral, f.ref) < res.error > default_atol
assert res.nfev == f.feval < ref.nfev
assert f.calls == ref.calls - 1
assert not res.success
assert res.status == eim._ECONVERR
# `maxfun` is currently not enforced
# # Test `maxfun` equal to required number of function evaluations
# # We should get all the same results
# f.feval, f.calls = 0, 0
# maxfun = ref.nfev
# res = _tanhsinh(f, 0, f.b, maxfun = maxfun)
# assert res == ref
#
# # Now reduce `maxfun`. We won't meet tolerances.
# f.feval, f.calls = 0, 0
# maxfun -= 1
# res = _tanhsinh(f, 0, f.b, maxfun=maxfun)
# assert self.error(res.integral, f.ref) < res.error > default_atol
# assert res.nfev == f.feval < ref.nfev
# assert f.calls == ref.calls - 1
# assert not res.success
# assert res.status == 2
# Take this result to be the new reference
ref = res
ref.calls = f.calls
# Test `atol`
f.feval, f.calls = 0, 0
# With this tolerance, we should get the exact same result as ref
atol = np.nextafter(ref.error, np.inf)
res = _tanhsinh(f, 0, f.b, rtol=0, atol=atol)
assert res.integral == ref.integral
assert res.error == ref.error
assert res.nfev == f.feval == ref.nfev
assert f.calls == ref.calls
# Except the result is considered to be successful
assert res.success
assert res.status == 0
f.feval, f.calls = 0, 0
# With a tighter tolerance, we should get a more accurate result
atol = np.nextafter(ref.error, -np.inf)
res = _tanhsinh(f, 0, f.b, rtol=0, atol=atol)
assert self.error(res.integral, f.ref) < res.error < atol
assert res.nfev == f.feval > ref.nfev
assert f.calls > ref.calls
assert res.success
assert res.status == 0
# Test `rtol`
f.feval, f.calls = 0, 0
# With this tolerance, we should get the exact same result as ref
rtol = np.nextafter(ref.error/ref.integral, np.inf)
res = _tanhsinh(f, 0, f.b, rtol=rtol)
assert res.integral == ref.integral
assert res.error == ref.error
assert res.nfev == f.feval == ref.nfev
assert f.calls == ref.calls
# Except the result is considered to be successful
assert res.success
assert res.status == 0
f.feval, f.calls = 0, 0
# With a tighter tolerance, we should get a more accurate result
rtol = np.nextafter(ref.error/ref.integral, -np.inf)
res = _tanhsinh(f, 0, f.b, rtol=rtol)
assert self.error(res.integral, f.ref)/f.ref < res.error/res.integral < rtol
assert res.nfev == f.feval > ref.nfev
assert f.calls > ref.calls
assert res.success
assert res.status == 0
@pytest.mark.parametrize('rtol', [1e-4, 1e-14])
def test_log(self, rtol):
# Test equivalence of log-integration and regular integration
dist = stats.norm()
test_tols = dict(atol=1e-18, rtol=1e-15)
# Positive integrand (real log-integrand)
res = _tanhsinh(dist.logpdf, -1, 2, log=True, rtol=np.log(rtol))
ref = _tanhsinh(dist.pdf, -1, 2, rtol=rtol)
assert_allclose(np.exp(res.integral), ref.integral, **test_tols)
assert_allclose(np.exp(res.error), ref.error, **test_tols)
assert res.nfev == ref.nfev
# Real integrand (complex log-integrand)
def f(x):
return -dist.logpdf(x)*dist.pdf(x)
def logf(x):
return np.log(dist.logpdf(x) + 0j) + dist.logpdf(x) + np.pi * 1j
res = _tanhsinh(logf, -np.inf, np.inf, log=True)
ref = _tanhsinh(f, -np.inf, np.inf)
# In gh-19173, we saw `invalid` warnings on one CI platform.
# Silencing `all` because I can't reproduce locally and don't want
# to risk the need to run CI again.
with np.errstate(all='ignore'):
assert_allclose(np.exp(res.integral), ref.integral, **test_tols)
assert_allclose(np.exp(res.error), ref.error, **test_tols)
assert res.nfev == ref.nfev
def test_complex(self):
# Test integration of complex integrand
# Finite limits
def f(x):
return np.exp(1j * x)
res = _tanhsinh(f, 0, np.pi/4)
ref = np.sqrt(2)/2 + (1-np.sqrt(2)/2)*1j
assert_allclose(res.integral, ref)
# Infinite limits
dist1 = stats.norm(scale=1)
dist2 = stats.norm(scale=2)
def f(x):
return dist1.pdf(x) + 1j*dist2.pdf(x)
res = _tanhsinh(f, np.inf, -np.inf)
assert_allclose(res.integral, -(1+1j))
@pytest.mark.parametrize("maxlevel", range(4))
def test_minlevel(self, maxlevel):
# Verify that minlevel does not change the values at which the
# integrand is evaluated or the integral/error estimates, only the
# number of function calls
def f(x):
f.calls += 1
f.feval += np.size(x)
f.x = np.concatenate((f.x, x.ravel()))
return self.f2(x)
f.feval, f.calls, f.x = 0, 0, np.array([])
ref = _tanhsinh(f, 0, self.f2.b, minlevel=0, maxlevel=maxlevel)
ref_x = np.sort(f.x)
for minlevel in range(0, maxlevel + 1):
f.feval, f.calls, f.x = 0, 0, np.array([])
options = dict(minlevel=minlevel, maxlevel=maxlevel)
res = _tanhsinh(f, 0, self.f2.b, **options)
# Should be very close; all that has changed is the order of values
assert_allclose(res.integral, ref.integral, rtol=4e-16)
# Difference in absolute errors << magnitude of integral
assert_allclose(res.error, ref.error, atol=4e-16 * ref.integral)
assert res.nfev == f.feval == len(f.x)
assert f.calls == maxlevel - minlevel + 1 + 1 # 1 validation call
assert res.status == ref.status
assert_equal(ref_x, np.sort(f.x))
def test_improper_integrals(self):
# Test handling of infinite limits of integration (mixed with finite limits)
def f(x):
x[np.isinf(x)] = np.nan
return np.exp(-x**2)
a = [-np.inf, 0, -np.inf, np.inf, -20, -np.inf, -20]
b = [np.inf, np.inf, 0, -np.inf, 20, 20, np.inf]
ref = np.sqrt(np.pi)
res = _tanhsinh(f, a, b)
assert_allclose(res.integral, [ref, ref/2, ref/2, -ref, ref, ref, ref])
@pytest.mark.parametrize("limits", ((0, 3), ([-np.inf, 0], [3, 3])))
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
def test_dtype(self, limits, dtype):
# Test that dtypes are preserved
a, b = np.asarray(limits, dtype=dtype)[()]
def f(x):
assert x.dtype == dtype
return np.exp(x)
rtol = 1e-12 if dtype == np.float64 else 1e-5
res = _tanhsinh(f, a, b, rtol=rtol)
assert res.integral.dtype == dtype
assert res.error.dtype == dtype
assert np.all(res.success)
assert_allclose(res.integral, np.exp(b)-np.exp(a), rtol=rtol)
def test_maxiter_callback(self):
# Test behavior of `maxiter` parameter and `callback` interface
a, b = -np.inf, np.inf
def f(x):
return np.exp(-x*x)
minlevel, maxlevel = 0, 2
maxiter = maxlevel - minlevel + 1
kwargs = dict(minlevel=minlevel, maxlevel=maxlevel, rtol=1e-15)
res = _tanhsinh(f, a, b, **kwargs)
assert not res.success
assert res.maxlevel == maxlevel
def callback(res):
callback.iter += 1
callback.res = res
assert hasattr(res, 'integral')
assert res.status == 1
if callback.iter == maxiter:
raise StopIteration
callback.iter = -1 # callback called once before first iteration
callback.res = None
del kwargs['maxlevel']
res2 = _tanhsinh(f, a, b, **kwargs, callback=callback)
# terminating with callback is identical to terminating due to maxiter
# (except for `status`)
for key in res.keys():
if key == 'status':
assert callback.res[key] == 1
assert res[key] == -2
assert res2[key] == -4
else:
assert res2[key] == callback.res[key] == res[key]
def test_jumpstart(self):
# The intermediate results at each level i should be the same as the
# final results when jumpstarting at level i; i.e. minlevel=maxlevel=i
a, b = -np.inf, np.inf
def f(x):
return np.exp(-x*x)
def callback(res):
callback.integrals.append(res.integral)
callback.errors.append(res.error)
callback.integrals = []
callback.errors = []
maxlevel = 4
_tanhsinh(f, a, b, minlevel=0, maxlevel=maxlevel, callback=callback)
integrals = []
errors = []
for i in range(maxlevel + 1):
res = _tanhsinh(f, a, b, minlevel=i, maxlevel=i)
integrals.append(res.integral)
errors.append(res.error)
assert_allclose(callback.integrals[1:], integrals, rtol=1e-15)
assert_allclose(callback.errors[1:], errors, rtol=1e-15, atol=1e-16)
def test_special_cases(self):
# Test edge cases and other special cases
# Test that integers are not passed to `f`
# (otherwise this would overflow)
def f(x):
assert np.issubdtype(x.dtype, np.floating)
return x ** 99
res = _tanhsinh(f, 0, 1)
assert res.success
assert_allclose(res.integral, 1/100)
# Test levels 0 and 1; error is NaN
res = _tanhsinh(f, 0, 1, maxlevel=0)
assert res.integral > 0
assert_equal(res.error, np.nan)
res = _tanhsinh(f, 0, 1, maxlevel=1)
assert res.integral > 0
assert_equal(res.error, np.nan)
# Tes equal left and right integration limits
res = _tanhsinh(f, 1, 1)
assert res.success
assert res.maxlevel == -1
assert_allclose(res.integral, 0)
# Test scalar `args` (not in tuple)
def f(x, c):
return x**c
res = _tanhsinh(f, 0, 1, args=99)
assert_allclose(res.integral, 1/100)
# Test NaNs
a = [np.nan, 0, 0, 0]
b = [1, np.nan, 1, 1]
c = [1, 1, np.nan, 1]
res = _tanhsinh(f, a, b, args=(c,))
assert_allclose(res.integral, [np.nan, np.nan, np.nan, 0.5])
assert_allclose(res.error[:3], np.nan)
assert_equal(res.status, [-3, -3, -3, 0])
assert_equal(res.success, [False, False, False, True])
assert_equal(res.nfev[:3], 1)
# Test complex integral followed by real integral
# Previously, h0 was of the result dtype. If the `dtype` were complex,
# this could lead to complex cached abscissae/weights. If these get
# cast to real dtype for a subsequent real integral, we would get a
# ComplexWarning. Check that this is avoided.
_pair_cache.xjc = np.empty(0)
_pair_cache.wj = np.empty(0)
_pair_cache.indices = [0]
_pair_cache.h0 = None
res = _tanhsinh(lambda x: x*1j, 0, 1)
assert_allclose(res.integral, 0.5*1j)
res = _tanhsinh(lambda x: x, 0, 1)
assert_allclose(res.integral, 0.5)
# Test zero-size
shape = (0, 3)
res = _tanhsinh(lambda x: x, 0, np.zeros(shape))
attrs = ['integral', 'error', 'success', 'status', 'nfev', 'maxlevel']
for attr in attrs:
assert_equal(res[attr].shape, shape)
class TestNSum:
rng = np.random.default_rng(5895448232066142650)
p = rng.uniform(1, 10, size=10)
def f1(self, k):
# Integers are never passed to `f1`; if they were, we'd get
# integer to negative integer power error
return k**(-2)
f1.ref = np.pi**2/6
f1.a = 1
f1.b = np.inf
f1.args = tuple()
def f2(self, k, p):
return 1 / k**p
f2.ref = special.zeta(p, 1)
f2.a = 1
f2.b = np.inf
f2.args = (p,)
def f3(self, k, p):
return 1 / k**p
f3.a = 1
f3.b = rng.integers(5, 15, size=(3, 1))
f3.ref = _gen_harmonic_gt1(f3.b, p)
f3.args = (p,)
def test_input_validation(self):
f = self.f1
message = '`f` must be callable.'
with pytest.raises(ValueError, match=message):
_nsum(42, f.a, f.b)
message = '...must be True or False.'
with pytest.raises(ValueError, match=message):
_nsum(f, f.a, f.b, log=2)
message = '...must be real numbers.'
with pytest.raises(ValueError, match=message):
_nsum(f, 1+1j, f.b)
with pytest.raises(ValueError, match=message):
_nsum(f, f.a, None)
with pytest.raises(ValueError, match=message):
_nsum(f, f.a, f.b, step=object())
with pytest.raises(ValueError, match=message):
_nsum(f, f.a, f.b, atol='ekki')
with pytest.raises(ValueError, match=message):
_nsum(f, f.a, f.b, rtol=pytest)
with np.errstate(all='ignore'):
res = _nsum(f, [np.nan, -np.inf, np.inf], 1)
assert np.all((res.status == -1) & np.isnan(res.sum)
& np.isnan(res.error) & ~res.success & res.nfev == 1)
res = _nsum(f, 10, [np.nan, 1])
assert np.all((res.status == -1) & np.isnan(res.sum)
& np.isnan(res.error) & ~res.success & res.nfev == 1)
res = _nsum(f, 1, 10, step=[np.nan, -np.inf, np.inf, -1, 0])
assert np.all((res.status == -1) & np.isnan(res.sum)
& np.isnan(res.error) & ~res.success & res.nfev == 1)
message = '...must be non-negative and finite.'
with pytest.raises(ValueError, match=message):
_nsum(f, f.a, f.b, rtol=-1)
with pytest.raises(ValueError, match=message):
_nsum(f, f.a, f.b, atol=np.inf)
message = '...may not be positive infinity.'
with pytest.raises(ValueError, match=message):
_nsum(f, f.a, f.b, rtol=np.inf, log=True)
with pytest.raises(ValueError, match=message):
_nsum(f, f.a, f.b, atol=np.inf, log=True)
message = '...must be a non-negative integer.'
with pytest.raises(ValueError, match=message):
_nsum(f, f.a, f.b, maxterms=3.5)
with pytest.raises(ValueError, match=message):
_nsum(f, f.a, f.b, maxterms=-2)
@pytest.mark.parametrize('f_number', range(1, 4))
def test_basic(self, f_number):
f = getattr(self, f"f{f_number}")
res = _nsum(f, f.a, f.b, args=f.args)
assert_allclose(res.sum, f.ref)
assert_equal(res.status, 0)
assert_equal(res.success, True)
with np.errstate(divide='ignore'):
logres = _nsum(lambda *args: np.log(f(*args)),
f.a, f.b, log=True, args=f.args)
assert_allclose(np.exp(logres.sum), res.sum)
assert_allclose(np.exp(logres.error), res.error)
assert_equal(logres.status, 0)
assert_equal(logres.success, True)
@pytest.mark.parametrize('maxterms', [0, 1, 10, 20, 100])
def test_integral(self, maxterms):
# test precise behavior of integral approximation
f = self.f1
def logf(x):
return -2*np.log(x)
def F(x):
return -1 / x
a = np.asarray([1, 5])[:, np.newaxis]
b = np.asarray([20, 100, np.inf])[:, np.newaxis, np.newaxis]
step = np.asarray([0.5, 1, 2]).reshape((-1, 1, 1, 1))
nsteps = np.floor((b - a)/step)
b_original = b
b = a + nsteps*step
k = a + maxterms*step
# partial sum
direct = f(a + np.arange(maxterms)*step).sum(axis=-1, keepdims=True)
integral = (F(b) - F(k))/step # integral approximation of remainder
low = direct + integral + f(b) # theoretical lower bound
high = direct + integral + f(k) # theoretical upper bound
ref_sum = (low + high)/2 # _nsum uses average of the two
ref_err = (high - low)/2 # error (assuming perfect quadrature)
# correct reference values where number of terms < maxterms
a, b, step = np.broadcast_arrays(a, b, step)
for i in np.ndindex(a.shape):
ai, bi, stepi = a[i], b[i], step[i]
if (bi - ai)/stepi + 1 <= maxterms:
direct = f(np.arange(ai, bi+stepi, stepi)).sum()
ref_sum[i] = direct
ref_err[i] = direct * np.finfo(direct).eps
rtol = 1e-12
res = _nsum(f, a, b_original, step=step, maxterms=maxterms, rtol=rtol)
assert_allclose(res.sum, ref_sum, rtol=10*rtol)
assert_allclose(res.error, ref_err, rtol=100*rtol)
assert_equal(res.status, 0)
assert_equal(res.success, True)
i = ((b_original - a)/step + 1 <= maxterms)
assert_allclose(res.sum[i], ref_sum[i], rtol=1e-15)
assert_allclose(res.error[i], ref_err[i], rtol=1e-15)
logres = _nsum(logf, a, b_original, step=step, log=True,
rtol=np.log(rtol), maxterms=maxterms)
assert_allclose(np.exp(logres.sum), res.sum)
assert_allclose(np.exp(logres.error), res.error)
assert_equal(logres.status, 0)
assert_equal(logres.success, True)
@pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
def test_vectorization(self, shape):
# Test for correct functionality, output shapes, and dtypes for various
# input shapes.
rng = np.random.default_rng(82456839535679456794)
a = rng.integers(1, 10, size=shape)
# when the sum can be computed directly or `maxterms` is large enough
# to meet `atol`, there are slight differences (for good reason)
# between vectorized call and looping.
b = np.inf
p = rng.random(shape) + 1
n = np.prod(shape)
def f(x, p):
f.feval += 1 if (x.size == n or x.ndim <= 1) else x.shape[-1]
return 1 / x ** p
f.feval = 0
@np.vectorize
def _nsum_single(a, b, p, maxterms):
return _nsum(lambda x: 1 / x**p, a, b, maxterms=maxterms)
res = _nsum(f, a, b, maxterms=1000, args=(p,))
refs = _nsum_single(a, b, p, maxterms=1000).ravel()
attrs = ['sum', 'error', 'success', 'status', 'nfev']
for attr in attrs:
ref_attr = [getattr(ref, attr) for ref in refs]
res_attr = getattr(res, attr)
assert_allclose(res_attr.ravel(), ref_attr, rtol=1e-15)
assert_equal(res_attr.shape, shape)
assert np.issubdtype(res.success.dtype, np.bool_)
assert np.issubdtype(res.status.dtype, np.integer)
assert np.issubdtype(res.nfev.dtype, np.integer)
assert_equal(np.max(res.nfev), f.feval)
def test_status(self):
f = self.f2
p = [2, 2, 0.9, 1.1]
a = [0, 0, 1, 1]
b = [10, np.inf, np.inf, np.inf]
ref = special.zeta(p, 1)
with np.errstate(divide='ignore'): # intentionally dividing by zero
res = _nsum(f, a, b, args=(p,))
assert_equal(res.success, [False, False, False, True])
assert_equal(res.status, [-3, -3, -2, 0])
assert_allclose(res.sum[res.success], ref[res.success])
def test_nfev(self):
def f(x):
f.nfev += np.size(x)
return 1 / x**2
f.nfev = 0
res = _nsum(f, 1, 10)
assert_equal(res.nfev, f.nfev)
f.nfev = 0
res = _nsum(f, 1, np.inf, atol=1e-6)
assert_equal(res.nfev, f.nfev)
def test_inclusive(self):
# There was an edge case off-by one bug when `_direct` was called with
# `inclusive=True`. Check that this is resolved.
res = _nsum(lambda k: 1 / k ** 2, [1, 4], np.inf, maxterms=500, atol=0.1)
ref = _nsum(lambda k: 1 / k ** 2, [1, 4], np.inf)
assert np.all(res.sum > (ref.sum - res.error))
assert np.all(res.sum < (ref.sum + res.error))
def test_special_case(self):
# test equal lower/upper limit
f = self.f1
a = b = 2
res = _nsum(f, a, b)
assert_equal(res.sum, f(a))
# Test scalar `args` (not in tuple)
res = _nsum(self.f2, 1, np.inf, args=2)
assert_allclose(res.sum, self.f1.ref) # f1.ref is correct w/ args=2
# Test 0 size input
a = np.empty((3, 1, 1)) # arbitrary broadcastable shapes
b = np.empty((0, 1)) # could use Hypothesis
p = np.empty(4) # but it's overkill
shape = np.broadcast_shapes(a.shape, b.shape, p.shape)
res = _nsum(self.f2, a, b, args=(p,))
assert res.sum.shape == shape
assert res.status.shape == shape
assert res.nfev.shape == shape
# Test maxterms=0
def f(x):
with np.errstate(divide='ignore'):
return 1 / x
res = _nsum(f, 0, 10, maxterms=0)
assert np.isnan(res.sum)
assert np.isnan(res.error)
assert res.status == -2
res = _nsum(f, 0, 10, maxterms=1)
assert np.isnan(res.sum)
assert np.isnan(res.error)
assert res.status == -3
# Test NaNs
# should skip both direct and integral methods if there are NaNs
a = [np.nan, 1, 1, 1]
b = [np.inf, np.nan, np.inf, np.inf]
p = [2, 2, np.nan, 2]
res = _nsum(self.f2, a, b, args=(p,))
assert_allclose(res.sum, [np.nan, np.nan, np.nan, self.f1.ref])
assert_allclose(res.error[:3], np.nan)
assert_equal(res.status, [-1, -1, -3, 0])
assert_equal(res.success, [False, False, False, True])
# Ideally res.nfev[2] would be 1, but `tanhsinh` has some function evals
assert_equal(res.nfev[:2], 1)
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
def test_dtype(self, dtype):
def f(k):
assert k.dtype == dtype
return 1 / k ** np.asarray(2, dtype=dtype)[()]
a = np.asarray(1, dtype=dtype)
b = np.asarray([10, np.inf], dtype=dtype)
res = _nsum(f, a, b)
assert res.sum.dtype == dtype
assert res.error.dtype == dtype
rtol = 1e-12 if dtype == np.float64 else 1e-6
ref = _gen_harmonic_gt1(b, 2)
assert_allclose(res.sum, ref, rtol=rtol)