220 lines
7.7 KiB
Python
220 lines
7.7 KiB
Python
|
import pytest
|
||
|
from numpy.testing import assert_array_almost_equal, assert_array_equal
|
||
|
from pytest import raises as assert_raises
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy import array, transpose, dot, conjugate, zeros_like, empty
|
||
|
from numpy.random import random
|
||
|
from scipy.linalg import cholesky, cholesky_banded, cho_solve_banded, \
|
||
|
cho_factor, cho_solve
|
||
|
|
||
|
from scipy.linalg._testutils import assert_no_overwrite
|
||
|
|
||
|
|
||
|
class TestCholesky:
|
||
|
|
||
|
def test_simple(self):
|
||
|
a = [[8, 2, 3], [2, 9, 3], [3, 3, 6]]
|
||
|
c = cholesky(a)
|
||
|
assert_array_almost_equal(dot(transpose(c), c), a)
|
||
|
c = transpose(c)
|
||
|
a = dot(c, transpose(c))
|
||
|
assert_array_almost_equal(cholesky(a, lower=1), c)
|
||
|
|
||
|
def test_check_finite(self):
|
||
|
a = [[8, 2, 3], [2, 9, 3], [3, 3, 6]]
|
||
|
c = cholesky(a, check_finite=False)
|
||
|
assert_array_almost_equal(dot(transpose(c), c), a)
|
||
|
c = transpose(c)
|
||
|
a = dot(c, transpose(c))
|
||
|
assert_array_almost_equal(cholesky(a, lower=1, check_finite=False), c)
|
||
|
|
||
|
def test_simple_complex(self):
|
||
|
m = array([[3+1j, 3+4j, 5], [0, 2+2j, 2+7j], [0, 0, 7+4j]])
|
||
|
a = dot(transpose(conjugate(m)), m)
|
||
|
c = cholesky(a)
|
||
|
a1 = dot(transpose(conjugate(c)), c)
|
||
|
assert_array_almost_equal(a, a1)
|
||
|
c = transpose(c)
|
||
|
a = dot(c, transpose(conjugate(c)))
|
||
|
assert_array_almost_equal(cholesky(a, lower=1), c)
|
||
|
|
||
|
def test_random(self):
|
||
|
n = 20
|
||
|
for k in range(2):
|
||
|
m = random([n, n])
|
||
|
for i in range(n):
|
||
|
m[i, i] = 20*(.1+m[i, i])
|
||
|
a = dot(transpose(m), m)
|
||
|
c = cholesky(a)
|
||
|
a1 = dot(transpose(c), c)
|
||
|
assert_array_almost_equal(a, a1)
|
||
|
c = transpose(c)
|
||
|
a = dot(c, transpose(c))
|
||
|
assert_array_almost_equal(cholesky(a, lower=1), c)
|
||
|
|
||
|
def test_random_complex(self):
|
||
|
n = 20
|
||
|
for k in range(2):
|
||
|
m = random([n, n])+1j*random([n, n])
|
||
|
for i in range(n):
|
||
|
m[i, i] = 20*(.1+abs(m[i, i]))
|
||
|
a = dot(transpose(conjugate(m)), m)
|
||
|
c = cholesky(a)
|
||
|
a1 = dot(transpose(conjugate(c)), c)
|
||
|
assert_array_almost_equal(a, a1)
|
||
|
c = transpose(c)
|
||
|
a = dot(c, transpose(conjugate(c)))
|
||
|
assert_array_almost_equal(cholesky(a, lower=1), c)
|
||
|
|
||
|
@pytest.mark.xslow
|
||
|
def test_int_overflow(self):
|
||
|
# regression test for
|
||
|
# https://github.com/scipy/scipy/issues/17436
|
||
|
# the problem was an int overflow in zeroing out
|
||
|
# the unused triangular part
|
||
|
n = 47_000
|
||
|
x = np.eye(n, dtype=np.float64, order='F')
|
||
|
x[:4, :4] = np.array([[4, -2, 3, -1],
|
||
|
[-2, 4, -3, 1],
|
||
|
[3, -3, 5, 0],
|
||
|
[-1, 1, 0, 5]])
|
||
|
|
||
|
cholesky(x, check_finite=False, overwrite_a=True) # should not segfault
|
||
|
|
||
|
|
||
|
class TestCholeskyBanded:
|
||
|
"""Tests for cholesky_banded() and cho_solve_banded."""
|
||
|
|
||
|
def test_check_finite(self):
|
||
|
# Symmetric positive definite banded matrix `a`
|
||
|
a = array([[4.0, 1.0, 0.0, 0.0],
|
||
|
[1.0, 4.0, 0.5, 0.0],
|
||
|
[0.0, 0.5, 4.0, 0.2],
|
||
|
[0.0, 0.0, 0.2, 4.0]])
|
||
|
# Banded storage form of `a`.
|
||
|
ab = array([[-1.0, 1.0, 0.5, 0.2],
|
||
|
[4.0, 4.0, 4.0, 4.0]])
|
||
|
c = cholesky_banded(ab, lower=False, check_finite=False)
|
||
|
ufac = zeros_like(a)
|
||
|
ufac[list(range(4)), list(range(4))] = c[-1]
|
||
|
ufac[(0, 1, 2), (1, 2, 3)] = c[0, 1:]
|
||
|
assert_array_almost_equal(a, dot(ufac.T, ufac))
|
||
|
|
||
|
b = array([0.0, 0.5, 4.2, 4.2])
|
||
|
x = cho_solve_banded((c, False), b, check_finite=False)
|
||
|
assert_array_almost_equal(x, [0.0, 0.0, 1.0, 1.0])
|
||
|
|
||
|
def test_upper_real(self):
|
||
|
# Symmetric positive definite banded matrix `a`
|
||
|
a = array([[4.0, 1.0, 0.0, 0.0],
|
||
|
[1.0, 4.0, 0.5, 0.0],
|
||
|
[0.0, 0.5, 4.0, 0.2],
|
||
|
[0.0, 0.0, 0.2, 4.0]])
|
||
|
# Banded storage form of `a`.
|
||
|
ab = array([[-1.0, 1.0, 0.5, 0.2],
|
||
|
[4.0, 4.0, 4.0, 4.0]])
|
||
|
c = cholesky_banded(ab, lower=False)
|
||
|
ufac = zeros_like(a)
|
||
|
ufac[list(range(4)), list(range(4))] = c[-1]
|
||
|
ufac[(0, 1, 2), (1, 2, 3)] = c[0, 1:]
|
||
|
assert_array_almost_equal(a, dot(ufac.T, ufac))
|
||
|
|
||
|
b = array([0.0, 0.5, 4.2, 4.2])
|
||
|
x = cho_solve_banded((c, False), b)
|
||
|
assert_array_almost_equal(x, [0.0, 0.0, 1.0, 1.0])
|
||
|
|
||
|
def test_upper_complex(self):
|
||
|
# Hermitian positive definite banded matrix `a`
|
||
|
a = array([[4.0, 1.0, 0.0, 0.0],
|
||
|
[1.0, 4.0, 0.5, 0.0],
|
||
|
[0.0, 0.5, 4.0, -0.2j],
|
||
|
[0.0, 0.0, 0.2j, 4.0]])
|
||
|
# Banded storage form of `a`.
|
||
|
ab = array([[-1.0, 1.0, 0.5, -0.2j],
|
||
|
[4.0, 4.0, 4.0, 4.0]])
|
||
|
c = cholesky_banded(ab, lower=False)
|
||
|
ufac = zeros_like(a)
|
||
|
ufac[list(range(4)), list(range(4))] = c[-1]
|
||
|
ufac[(0, 1, 2), (1, 2, 3)] = c[0, 1:]
|
||
|
assert_array_almost_equal(a, dot(ufac.conj().T, ufac))
|
||
|
|
||
|
b = array([0.0, 0.5, 4.0-0.2j, 0.2j + 4.0])
|
||
|
x = cho_solve_banded((c, False), b)
|
||
|
assert_array_almost_equal(x, [0.0, 0.0, 1.0, 1.0])
|
||
|
|
||
|
def test_lower_real(self):
|
||
|
# Symmetric positive definite banded matrix `a`
|
||
|
a = array([[4.0, 1.0, 0.0, 0.0],
|
||
|
[1.0, 4.0, 0.5, 0.0],
|
||
|
[0.0, 0.5, 4.0, 0.2],
|
||
|
[0.0, 0.0, 0.2, 4.0]])
|
||
|
# Banded storage form of `a`.
|
||
|
ab = array([[4.0, 4.0, 4.0, 4.0],
|
||
|
[1.0, 0.5, 0.2, -1.0]])
|
||
|
c = cholesky_banded(ab, lower=True)
|
||
|
lfac = zeros_like(a)
|
||
|
lfac[list(range(4)), list(range(4))] = c[0]
|
||
|
lfac[(1, 2, 3), (0, 1, 2)] = c[1, :3]
|
||
|
assert_array_almost_equal(a, dot(lfac, lfac.T))
|
||
|
|
||
|
b = array([0.0, 0.5, 4.2, 4.2])
|
||
|
x = cho_solve_banded((c, True), b)
|
||
|
assert_array_almost_equal(x, [0.0, 0.0, 1.0, 1.0])
|
||
|
|
||
|
def test_lower_complex(self):
|
||
|
# Hermitian positive definite banded matrix `a`
|
||
|
a = array([[4.0, 1.0, 0.0, 0.0],
|
||
|
[1.0, 4.0, 0.5, 0.0],
|
||
|
[0.0, 0.5, 4.0, -0.2j],
|
||
|
[0.0, 0.0, 0.2j, 4.0]])
|
||
|
# Banded storage form of `a`.
|
||
|
ab = array([[4.0, 4.0, 4.0, 4.0],
|
||
|
[1.0, 0.5, 0.2j, -1.0]])
|
||
|
c = cholesky_banded(ab, lower=True)
|
||
|
lfac = zeros_like(a)
|
||
|
lfac[list(range(4)), list(range(4))] = c[0]
|
||
|
lfac[(1, 2, 3), (0, 1, 2)] = c[1, :3]
|
||
|
assert_array_almost_equal(a, dot(lfac, lfac.conj().T))
|
||
|
|
||
|
b = array([0.0, 0.5j, 3.8j, 3.8])
|
||
|
x = cho_solve_banded((c, True), b)
|
||
|
assert_array_almost_equal(x, [0.0, 0.0, 1.0j, 1.0])
|
||
|
|
||
|
|
||
|
class TestOverwrite:
|
||
|
def test_cholesky(self):
|
||
|
assert_no_overwrite(cholesky, [(3, 3)])
|
||
|
|
||
|
def test_cho_factor(self):
|
||
|
assert_no_overwrite(cho_factor, [(3, 3)])
|
||
|
|
||
|
def test_cho_solve(self):
|
||
|
x = array([[2, -1, 0], [-1, 2, -1], [0, -1, 2]])
|
||
|
xcho = cho_factor(x)
|
||
|
assert_no_overwrite(lambda b: cho_solve(xcho, b), [(3,)])
|
||
|
|
||
|
def test_cholesky_banded(self):
|
||
|
assert_no_overwrite(cholesky_banded, [(2, 3)])
|
||
|
|
||
|
def test_cho_solve_banded(self):
|
||
|
x = array([[0, -1, -1], [2, 2, 2]])
|
||
|
xcho = cholesky_banded(x)
|
||
|
assert_no_overwrite(lambda b: cho_solve_banded((xcho, False), b),
|
||
|
[(3,)])
|
||
|
|
||
|
|
||
|
class TestEmptyArray:
|
||
|
def test_cho_factor_empty_square(self):
|
||
|
a = empty((0, 0))
|
||
|
b = array([])
|
||
|
c = array([[]])
|
||
|
d = []
|
||
|
e = [[]]
|
||
|
|
||
|
x, _ = cho_factor(a)
|
||
|
assert_array_equal(x, a)
|
||
|
|
||
|
for x in ([b, c, d, e]):
|
||
|
assert_raises(ValueError, cho_factor, x)
|