172 lines
6.7 KiB
Python
172 lines
6.7 KiB
Python
|
import math
|
||
|
import numpy as np
|
||
|
from scipy import special
|
||
|
from scipy.stats._qmc import primes_from_2_to
|
||
|
|
||
|
|
||
|
def _primes(n):
|
||
|
# Defined to facilitate comparison between translation and source
|
||
|
# In Matlab, primes(10.5) -> first four primes, primes(11.5) -> first five
|
||
|
return primes_from_2_to(math.ceil(n))
|
||
|
|
||
|
|
||
|
def _gaminv(a, b):
|
||
|
# Defined to facilitate comparison between translation and source
|
||
|
# Matlab's `gaminv` is like `special.gammaincinv` but args are reversed
|
||
|
return special.gammaincinv(b, a)
|
||
|
|
||
|
|
||
|
def _qsimvtv(m, nu, sigma, a, b, rng):
|
||
|
"""Estimates the multivariate t CDF using randomized QMC
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : int
|
||
|
The number of points
|
||
|
nu : float
|
||
|
Degrees of freedom
|
||
|
sigma : ndarray
|
||
|
A 2D positive semidefinite covariance matrix
|
||
|
a : ndarray
|
||
|
Lower integration limits
|
||
|
b : ndarray
|
||
|
Upper integration limits.
|
||
|
rng : Generator
|
||
|
Pseudorandom number generator
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
p : float
|
||
|
The estimated CDF.
|
||
|
e : float
|
||
|
An absolute error estimate.
|
||
|
|
||
|
"""
|
||
|
# _qsimvtv is a Python translation of the Matlab function qsimvtv,
|
||
|
# semicolons and all.
|
||
|
#
|
||
|
# This function uses an algorithm given in the paper
|
||
|
# "Comparison of Methods for the Numerical Computation of
|
||
|
# Multivariate t Probabilities", in
|
||
|
# J. of Computational and Graphical Stat., 11(2002), pp. 950-971, by
|
||
|
# Alan Genz and Frank Bretz
|
||
|
#
|
||
|
# The primary references for the numerical integration are
|
||
|
# "On a Number-Theoretical Integration Method"
|
||
|
# H. Niederreiter, Aequationes Mathematicae, 8(1972), pp. 304-11.
|
||
|
# and
|
||
|
# "Randomization of Number Theoretic Methods for Multiple Integration"
|
||
|
# R. Cranley & T.N.L. Patterson, SIAM J Numer Anal, 13(1976), pp. 904-14.
|
||
|
#
|
||
|
# Alan Genz is the author of this function and following Matlab functions.
|
||
|
# Alan Genz, WSU Math, PO Box 643113, Pullman, WA 99164-3113
|
||
|
# Email : alangenz@wsu.edu
|
||
|
#
|
||
|
# Copyright (C) 2013, Alan Genz, All rights reserved.
|
||
|
#
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided the following conditions are met:
|
||
|
# 1. Redistributions of source code must retain the above copyright
|
||
|
# notice, this list of conditions and the following disclaimer.
|
||
|
# 2. Redistributions in binary form must reproduce the above copyright
|
||
|
# notice, this list of conditions and the following disclaimer in
|
||
|
# the documentation and/or other materials provided with the
|
||
|
# distribution.
|
||
|
# 3. The contributor name(s) may not be used to endorse or promote
|
||
|
# products derived from this software without specific prior
|
||
|
# written permission.
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
||
|
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||
|
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
|
||
|
# TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF USE
|
||
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
# Initialization
|
||
|
sn = max(1, math.sqrt(nu)); ch, az, bz = _chlrps(sigma, a/sn, b/sn)
|
||
|
n = len(sigma); N = 10; P = math.ceil(m/N); on = np.ones(P); p = 0; e = 0
|
||
|
ps = np.sqrt(_primes(5*n*math.log(n+4)/4)); q = ps[:, np.newaxis] # Richtmyer gens.
|
||
|
|
||
|
# Randomization loop for ns samples
|
||
|
c = None; dc = None
|
||
|
for S in range(N):
|
||
|
vp = on.copy(); s = np.zeros((n, P))
|
||
|
for i in range(n):
|
||
|
x = np.abs(2*np.mod(q[i]*np.arange(1, P+1) + rng.random(), 1)-1) # periodizing transform
|
||
|
if i == 0:
|
||
|
r = on
|
||
|
if nu > 0:
|
||
|
r = np.sqrt(2*_gaminv(x, nu/2))
|
||
|
else:
|
||
|
y = _Phinv(c + x*dc)
|
||
|
s[i:] += ch[i:, i-1:i] * y
|
||
|
si = s[i, :]; c = on.copy(); ai = az[i]*r - si; d = on.copy(); bi = bz[i]*r - si
|
||
|
c[ai <= -9] = 0; tl = abs(ai) < 9; c[tl] = _Phi(ai[tl])
|
||
|
d[bi <= -9] = 0; tl = abs(bi) < 9; d[tl] = _Phi(bi[tl])
|
||
|
dc = d - c; vp = vp * dc
|
||
|
d = (np.mean(vp) - p)/(S + 1); p = p + d; e = (S - 1)*e/(S + 1) + d**2
|
||
|
e = math.sqrt(e) # error estimate is 3 times std error with N samples.
|
||
|
return p, e
|
||
|
|
||
|
|
||
|
# Standard statistical normal distribution functions
|
||
|
def _Phi(z):
|
||
|
return special.ndtr(z)
|
||
|
|
||
|
|
||
|
def _Phinv(p):
|
||
|
return special.ndtri(p)
|
||
|
|
||
|
|
||
|
def _chlrps(R, a, b):
|
||
|
"""
|
||
|
Computes permuted and scaled lower Cholesky factor c for R which may be
|
||
|
singular, also permuting and scaling integration limit vectors a and b.
|
||
|
"""
|
||
|
ep = 1e-10 # singularity tolerance
|
||
|
eps = np.finfo(R.dtype).eps
|
||
|
|
||
|
n = len(R); c = R.copy(); ap = a.copy(); bp = b.copy(); d = np.sqrt(np.maximum(np.diag(c), 0))
|
||
|
for i in range(n):
|
||
|
if d[i] > 0:
|
||
|
c[:, i] /= d[i]; c[i, :] /= d[i]
|
||
|
ap[i] /= d[i]; bp[i] /= d[i]
|
||
|
y = np.zeros((n, 1)); sqtp = math.sqrt(2*math.pi)
|
||
|
|
||
|
for k in range(n):
|
||
|
im = k; ckk = 0; dem = 1; s = 0
|
||
|
for i in range(k, n):
|
||
|
if c[i, i] > eps:
|
||
|
cii = math.sqrt(max(c[i, i], 0))
|
||
|
if i > 0: s = c[i, :k] @ y[:k]
|
||
|
ai = (ap[i]-s)/cii; bi = (bp[i]-s)/cii; de = _Phi(bi)-_Phi(ai)
|
||
|
if de <= dem:
|
||
|
ckk = cii; dem = de; am = ai; bm = bi; im = i
|
||
|
if im > k:
|
||
|
ap[[im, k]] = ap[[k, im]]; bp[[im, k]] = bp[[k, im]]; c[im, im] = c[k, k]
|
||
|
t = c[im, :k].copy(); c[im, :k] = c[k, :k]; c[k, :k] = t
|
||
|
t = c[im+1:, im].copy(); c[im+1:, im] = c[im+1:, k]; c[im+1:, k] = t
|
||
|
t = c[k+1:im, k].copy(); c[k+1:im, k] = c[im, k+1:im].T; c[im, k+1:im] = t.T
|
||
|
if ckk > ep*(k+1):
|
||
|
c[k, k] = ckk; c[k, k+1:] = 0
|
||
|
for i in range(k+1, n):
|
||
|
c[i, k] = c[i, k]/ckk; c[i, k+1:i+1] = c[i, k+1:i+1] - c[i, k]*c[k+1:i+1, k].T
|
||
|
if abs(dem) > ep:
|
||
|
y[k] = (np.exp(-am**2/2) - np.exp(-bm**2/2)) / (sqtp*dem)
|
||
|
else:
|
||
|
y[k] = (am + bm) / 2
|
||
|
if am < -10:
|
||
|
y[k] = bm
|
||
|
elif bm > 10:
|
||
|
y[k] = am
|
||
|
c[k, :k+1] /= ckk; ap[k] /= ckk; bp[k] /= ckk
|
||
|
else:
|
||
|
c[k:, k] = 0; y[k] = (ap[k] + bp[k])/2
|
||
|
pass
|
||
|
return c, ap, bp
|