582 lines
19 KiB
Python
582 lines
19 KiB
Python
|
"""
|
||
|
Tests for HDBSCAN clustering algorithm
|
||
|
Based on the DBSCAN test code
|
||
|
"""
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
from scipy import stats
|
||
|
from scipy.spatial import distance
|
||
|
|
||
|
from sklearn.cluster import HDBSCAN
|
||
|
from sklearn.cluster._hdbscan._tree import (
|
||
|
CONDENSED_dtype,
|
||
|
_condense_tree,
|
||
|
_do_labelling,
|
||
|
)
|
||
|
from sklearn.cluster._hdbscan.hdbscan import _OUTLIER_ENCODING
|
||
|
from sklearn.datasets import make_blobs
|
||
|
from sklearn.metrics import fowlkes_mallows_score
|
||
|
from sklearn.metrics.pairwise import _VALID_METRICS, euclidean_distances
|
||
|
from sklearn.neighbors import BallTree, KDTree
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
from sklearn.utils import shuffle
|
||
|
from sklearn.utils._testing import assert_allclose, assert_array_equal
|
||
|
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS
|
||
|
|
||
|
X, y = make_blobs(n_samples=200, random_state=10)
|
||
|
X, y = shuffle(X, y, random_state=7)
|
||
|
X = StandardScaler().fit_transform(X)
|
||
|
|
||
|
ALGORITHMS = [
|
||
|
"kd_tree",
|
||
|
"ball_tree",
|
||
|
"brute",
|
||
|
"auto",
|
||
|
]
|
||
|
|
||
|
OUTLIER_SET = {-1} | {out["label"] for _, out in _OUTLIER_ENCODING.items()}
|
||
|
|
||
|
|
||
|
def check_label_quality(labels, threshold=0.99):
|
||
|
n_clusters = len(set(labels) - OUTLIER_SET)
|
||
|
assert n_clusters == 3
|
||
|
assert fowlkes_mallows_score(labels, y) > threshold
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("outlier_type", _OUTLIER_ENCODING)
|
||
|
def test_outlier_data(outlier_type):
|
||
|
"""
|
||
|
Tests if np.inf and np.nan data are each treated as special outliers.
|
||
|
"""
|
||
|
outlier = {
|
||
|
"infinite": np.inf,
|
||
|
"missing": np.nan,
|
||
|
}[outlier_type]
|
||
|
prob_check = {
|
||
|
"infinite": lambda x, y: x == y,
|
||
|
"missing": lambda x, y: np.isnan(x),
|
||
|
}[outlier_type]
|
||
|
label = _OUTLIER_ENCODING[outlier_type]["label"]
|
||
|
prob = _OUTLIER_ENCODING[outlier_type]["prob"]
|
||
|
|
||
|
X_outlier = X.copy()
|
||
|
X_outlier[0] = [outlier, 1]
|
||
|
X_outlier[5] = [outlier, outlier]
|
||
|
model = HDBSCAN().fit(X_outlier)
|
||
|
|
||
|
(missing_labels_idx,) = (model.labels_ == label).nonzero()
|
||
|
assert_array_equal(missing_labels_idx, [0, 5])
|
||
|
|
||
|
(missing_probs_idx,) = (prob_check(model.probabilities_, prob)).nonzero()
|
||
|
assert_array_equal(missing_probs_idx, [0, 5])
|
||
|
|
||
|
clean_indices = list(range(1, 5)) + list(range(6, 200))
|
||
|
clean_model = HDBSCAN().fit(X_outlier[clean_indices])
|
||
|
assert_array_equal(clean_model.labels_, model.labels_[clean_indices])
|
||
|
|
||
|
|
||
|
def test_hdbscan_distance_matrix():
|
||
|
"""
|
||
|
Tests that HDBSCAN works with precomputed distance matrices, and throws the
|
||
|
appropriate errors when needed.
|
||
|
"""
|
||
|
D = euclidean_distances(X)
|
||
|
D_original = D.copy()
|
||
|
labels = HDBSCAN(metric="precomputed", copy=True).fit_predict(D)
|
||
|
|
||
|
assert_allclose(D, D_original)
|
||
|
check_label_quality(labels)
|
||
|
|
||
|
msg = r"The precomputed distance matrix.*has shape"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
HDBSCAN(metric="precomputed", copy=True).fit_predict(X)
|
||
|
|
||
|
msg = r"The precomputed distance matrix.*values"
|
||
|
# Ensure the matrix is not symmetric
|
||
|
D[0, 1] = 10
|
||
|
D[1, 0] = 1
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
HDBSCAN(metric="precomputed").fit_predict(D)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("sparse_constructor", [*CSR_CONTAINERS, *CSC_CONTAINERS])
|
||
|
def test_hdbscan_sparse_distance_matrix(sparse_constructor):
|
||
|
"""
|
||
|
Tests that HDBSCAN works with sparse distance matrices.
|
||
|
"""
|
||
|
D = distance.squareform(distance.pdist(X))
|
||
|
D /= np.max(D)
|
||
|
|
||
|
threshold = stats.scoreatpercentile(D.flatten(), 50)
|
||
|
|
||
|
D[D >= threshold] = 0.0
|
||
|
D = sparse_constructor(D)
|
||
|
D.eliminate_zeros()
|
||
|
|
||
|
labels = HDBSCAN(metric="precomputed").fit_predict(D)
|
||
|
check_label_quality(labels)
|
||
|
|
||
|
|
||
|
def test_hdbscan_feature_array():
|
||
|
"""
|
||
|
Tests that HDBSCAN works with feature array, including an arbitrary
|
||
|
goodness of fit check. Note that the check is a simple heuristic.
|
||
|
"""
|
||
|
labels = HDBSCAN().fit_predict(X)
|
||
|
|
||
|
# Check that clustering is arbitrarily good
|
||
|
# This is a heuristic to guard against regression
|
||
|
check_label_quality(labels)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("algo", ALGORITHMS)
|
||
|
@pytest.mark.parametrize("metric", _VALID_METRICS)
|
||
|
def test_hdbscan_algorithms(algo, metric):
|
||
|
"""
|
||
|
Tests that HDBSCAN works with the expected combinations of algorithms and
|
||
|
metrics, or raises the expected errors.
|
||
|
"""
|
||
|
labels = HDBSCAN(algorithm=algo).fit_predict(X)
|
||
|
check_label_quality(labels)
|
||
|
|
||
|
# Validation for brute is handled by `pairwise_distances`
|
||
|
if algo in ("brute", "auto"):
|
||
|
return
|
||
|
|
||
|
ALGOS_TREES = {
|
||
|
"kd_tree": KDTree,
|
||
|
"ball_tree": BallTree,
|
||
|
}
|
||
|
metric_params = {
|
||
|
"mahalanobis": {"V": np.eye(X.shape[1])},
|
||
|
"seuclidean": {"V": np.ones(X.shape[1])},
|
||
|
"minkowski": {"p": 2},
|
||
|
"wminkowski": {"p": 2, "w": np.ones(X.shape[1])},
|
||
|
}.get(metric, None)
|
||
|
|
||
|
hdb = HDBSCAN(
|
||
|
algorithm=algo,
|
||
|
metric=metric,
|
||
|
metric_params=metric_params,
|
||
|
)
|
||
|
|
||
|
if metric not in ALGOS_TREES[algo].valid_metrics:
|
||
|
with pytest.raises(ValueError):
|
||
|
hdb.fit(X)
|
||
|
elif metric == "wminkowski":
|
||
|
with pytest.warns(FutureWarning):
|
||
|
hdb.fit(X)
|
||
|
else:
|
||
|
hdb.fit(X)
|
||
|
|
||
|
|
||
|
def test_dbscan_clustering():
|
||
|
"""
|
||
|
Tests that HDBSCAN can generate a sufficiently accurate dbscan clustering.
|
||
|
This test is more of a sanity check than a rigorous evaluation.
|
||
|
"""
|
||
|
clusterer = HDBSCAN().fit(X)
|
||
|
labels = clusterer.dbscan_clustering(0.3)
|
||
|
|
||
|
# We use a looser threshold due to dbscan producing a more constrained
|
||
|
# clustering representation
|
||
|
check_label_quality(labels, threshold=0.92)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("cut_distance", (0.1, 0.5, 1))
|
||
|
def test_dbscan_clustering_outlier_data(cut_distance):
|
||
|
"""
|
||
|
Tests if np.inf and np.nan data are each treated as special outliers.
|
||
|
"""
|
||
|
missing_label = _OUTLIER_ENCODING["missing"]["label"]
|
||
|
infinite_label = _OUTLIER_ENCODING["infinite"]["label"]
|
||
|
|
||
|
X_outlier = X.copy()
|
||
|
X_outlier[0] = [np.inf, 1]
|
||
|
X_outlier[2] = [1, np.nan]
|
||
|
X_outlier[5] = [np.inf, np.nan]
|
||
|
model = HDBSCAN().fit(X_outlier)
|
||
|
labels = model.dbscan_clustering(cut_distance=cut_distance)
|
||
|
|
||
|
missing_labels_idx = np.flatnonzero(labels == missing_label)
|
||
|
assert_array_equal(missing_labels_idx, [2, 5])
|
||
|
|
||
|
infinite_labels_idx = np.flatnonzero(labels == infinite_label)
|
||
|
assert_array_equal(infinite_labels_idx, [0])
|
||
|
|
||
|
clean_idx = list(set(range(200)) - set(missing_labels_idx + infinite_labels_idx))
|
||
|
clean_model = HDBSCAN().fit(X_outlier[clean_idx])
|
||
|
clean_labels = clean_model.dbscan_clustering(cut_distance=cut_distance)
|
||
|
assert_array_equal(clean_labels, labels[clean_idx])
|
||
|
|
||
|
|
||
|
def test_hdbscan_best_balltree_metric():
|
||
|
"""
|
||
|
Tests that HDBSCAN using `BallTree` works.
|
||
|
"""
|
||
|
labels = HDBSCAN(
|
||
|
metric="seuclidean", metric_params={"V": np.ones(X.shape[1])}
|
||
|
).fit_predict(X)
|
||
|
check_label_quality(labels)
|
||
|
|
||
|
|
||
|
def test_hdbscan_no_clusters():
|
||
|
"""
|
||
|
Tests that HDBSCAN correctly does not generate a valid cluster when the
|
||
|
`min_cluster_size` is too large for the data.
|
||
|
"""
|
||
|
labels = HDBSCAN(min_cluster_size=len(X) - 1).fit_predict(X)
|
||
|
assert set(labels).issubset(OUTLIER_SET)
|
||
|
|
||
|
|
||
|
def test_hdbscan_min_cluster_size():
|
||
|
"""
|
||
|
Test that the smallest non-noise cluster has at least `min_cluster_size`
|
||
|
many points
|
||
|
"""
|
||
|
for min_cluster_size in range(2, len(X), 1):
|
||
|
labels = HDBSCAN(min_cluster_size=min_cluster_size).fit_predict(X)
|
||
|
true_labels = [label for label in labels if label != -1]
|
||
|
if len(true_labels) != 0:
|
||
|
assert np.min(np.bincount(true_labels)) >= min_cluster_size
|
||
|
|
||
|
|
||
|
def test_hdbscan_callable_metric():
|
||
|
"""
|
||
|
Tests that HDBSCAN works when passed a callable metric.
|
||
|
"""
|
||
|
metric = distance.euclidean
|
||
|
labels = HDBSCAN(metric=metric).fit_predict(X)
|
||
|
check_label_quality(labels)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("tree", ["kd_tree", "ball_tree"])
|
||
|
def test_hdbscan_precomputed_non_brute(tree):
|
||
|
"""
|
||
|
Tests that HDBSCAN correctly raises an error when passing precomputed data
|
||
|
while requesting a tree-based algorithm.
|
||
|
"""
|
||
|
hdb = HDBSCAN(metric="precomputed", algorithm=tree)
|
||
|
msg = "precomputed is not a valid metric for"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
hdb.fit(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
||
|
def test_hdbscan_sparse(csr_container):
|
||
|
"""
|
||
|
Tests that HDBSCAN works correctly when passing sparse feature data.
|
||
|
Evaluates correctness by comparing against the same data passed as a dense
|
||
|
array.
|
||
|
"""
|
||
|
|
||
|
dense_labels = HDBSCAN().fit(X).labels_
|
||
|
check_label_quality(dense_labels)
|
||
|
|
||
|
_X_sparse = csr_container(X)
|
||
|
X_sparse = _X_sparse.copy()
|
||
|
sparse_labels = HDBSCAN().fit(X_sparse).labels_
|
||
|
assert_array_equal(dense_labels, sparse_labels)
|
||
|
|
||
|
# Compare that the sparse and dense non-precomputed routines return the same labels
|
||
|
# where the 0th observation contains the outlier.
|
||
|
for outlier_val, outlier_type in ((np.inf, "infinite"), (np.nan, "missing")):
|
||
|
X_dense = X.copy()
|
||
|
X_dense[0, 0] = outlier_val
|
||
|
dense_labels = HDBSCAN().fit(X_dense).labels_
|
||
|
check_label_quality(dense_labels)
|
||
|
assert dense_labels[0] == _OUTLIER_ENCODING[outlier_type]["label"]
|
||
|
|
||
|
X_sparse = _X_sparse.copy()
|
||
|
X_sparse[0, 0] = outlier_val
|
||
|
sparse_labels = HDBSCAN().fit(X_sparse).labels_
|
||
|
assert_array_equal(dense_labels, sparse_labels)
|
||
|
|
||
|
msg = "Sparse data matrices only support algorithm `brute`."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
HDBSCAN(metric="euclidean", algorithm="ball_tree").fit(X_sparse)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("algorithm", ALGORITHMS)
|
||
|
def test_hdbscan_centers(algorithm):
|
||
|
"""
|
||
|
Tests that HDBSCAN centers are calculated and stored properly, and are
|
||
|
accurate to the data.
|
||
|
"""
|
||
|
centers = [(0.0, 0.0), (3.0, 3.0)]
|
||
|
H, _ = make_blobs(n_samples=2000, random_state=0, centers=centers, cluster_std=0.5)
|
||
|
hdb = HDBSCAN(store_centers="both").fit(H)
|
||
|
|
||
|
for center, centroid, medoid in zip(centers, hdb.centroids_, hdb.medoids_):
|
||
|
assert_allclose(center, centroid, rtol=1, atol=0.05)
|
||
|
assert_allclose(center, medoid, rtol=1, atol=0.05)
|
||
|
|
||
|
# Ensure that nothing is done for noise
|
||
|
hdb = HDBSCAN(
|
||
|
algorithm=algorithm, store_centers="both", min_cluster_size=X.shape[0]
|
||
|
).fit(X)
|
||
|
assert hdb.centroids_.shape[0] == 0
|
||
|
assert hdb.medoids_.shape[0] == 0
|
||
|
|
||
|
|
||
|
def test_hdbscan_allow_single_cluster_with_epsilon():
|
||
|
"""
|
||
|
Tests that HDBSCAN single-cluster selection with epsilon works correctly.
|
||
|
"""
|
||
|
rng = np.random.RandomState(0)
|
||
|
no_structure = rng.rand(150, 2)
|
||
|
# without epsilon we should see many noise points as children of root.
|
||
|
labels = HDBSCAN(
|
||
|
min_cluster_size=5,
|
||
|
cluster_selection_epsilon=0.0,
|
||
|
cluster_selection_method="eom",
|
||
|
allow_single_cluster=True,
|
||
|
).fit_predict(no_structure)
|
||
|
unique_labels, counts = np.unique(labels, return_counts=True)
|
||
|
assert len(unique_labels) == 2
|
||
|
|
||
|
# Arbitrary heuristic. Would prefer something more precise.
|
||
|
assert counts[unique_labels == -1] > 30
|
||
|
|
||
|
# for this random seed an epsilon of 0.18 will produce exactly 2 noise
|
||
|
# points at that cut in single linkage.
|
||
|
labels = HDBSCAN(
|
||
|
min_cluster_size=5,
|
||
|
cluster_selection_epsilon=0.18,
|
||
|
cluster_selection_method="eom",
|
||
|
allow_single_cluster=True,
|
||
|
algorithm="kd_tree",
|
||
|
).fit_predict(no_structure)
|
||
|
unique_labels, counts = np.unique(labels, return_counts=True)
|
||
|
assert len(unique_labels) == 2
|
||
|
assert counts[unique_labels == -1] == 2
|
||
|
|
||
|
|
||
|
def test_hdbscan_better_than_dbscan():
|
||
|
"""
|
||
|
Validate that HDBSCAN can properly cluster this difficult synthetic
|
||
|
dataset. Note that DBSCAN fails on this (see HDBSCAN plotting
|
||
|
example)
|
||
|
"""
|
||
|
centers = [[-0.85, -0.85], [-0.85, 0.85], [3, 3], [3, -3]]
|
||
|
X, y = make_blobs(
|
||
|
n_samples=750,
|
||
|
centers=centers,
|
||
|
cluster_std=[0.2, 0.35, 1.35, 1.35],
|
||
|
random_state=0,
|
||
|
)
|
||
|
labels = HDBSCAN().fit(X).labels_
|
||
|
|
||
|
n_clusters = len(set(labels)) - int(-1 in labels)
|
||
|
assert n_clusters == 4
|
||
|
fowlkes_mallows_score(labels, y) > 0.99
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"kwargs, X",
|
||
|
[
|
||
|
({"metric": "precomputed"}, np.array([[1, np.inf], [np.inf, 1]])),
|
||
|
({"metric": "precomputed"}, [[1, 2], [2, 1]]),
|
||
|
({}, [[1, 2], [3, 4]]),
|
||
|
],
|
||
|
)
|
||
|
def test_hdbscan_usable_inputs(X, kwargs):
|
||
|
"""
|
||
|
Tests that HDBSCAN works correctly for array-likes and precomputed inputs
|
||
|
with non-finite points.
|
||
|
"""
|
||
|
HDBSCAN(min_samples=1, **kwargs).fit(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
||
|
def test_hdbscan_sparse_distances_too_few_nonzero(csr_container):
|
||
|
"""
|
||
|
Tests that HDBSCAN raises the correct error when there are too few
|
||
|
non-zero distances.
|
||
|
"""
|
||
|
X = csr_container(np.zeros((10, 10)))
|
||
|
|
||
|
msg = "There exists points with fewer than"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
HDBSCAN(metric="precomputed").fit(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
||
|
def test_hdbscan_sparse_distances_disconnected_graph(csr_container):
|
||
|
"""
|
||
|
Tests that HDBSCAN raises the correct error when the distance matrix
|
||
|
has multiple connected components.
|
||
|
"""
|
||
|
# Create symmetric sparse matrix with 2 connected components
|
||
|
X = np.zeros((20, 20))
|
||
|
X[:5, :5] = 1
|
||
|
X[5:, 15:] = 1
|
||
|
X = X + X.T
|
||
|
X = csr_container(X)
|
||
|
msg = "HDBSCAN cannot be perfomed on a disconnected graph"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
HDBSCAN(metric="precomputed").fit(X)
|
||
|
|
||
|
|
||
|
def test_hdbscan_tree_invalid_metric():
|
||
|
"""
|
||
|
Tests that HDBSCAN correctly raises an error for invalid metric choices.
|
||
|
"""
|
||
|
metric_callable = lambda x: x
|
||
|
msg = (
|
||
|
".* is not a valid metric for a .*-based algorithm\\. Please select a different"
|
||
|
" metric\\."
|
||
|
)
|
||
|
|
||
|
# Callables are not supported for either
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
HDBSCAN(algorithm="kd_tree", metric=metric_callable).fit(X)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
HDBSCAN(algorithm="ball_tree", metric=metric_callable).fit(X)
|
||
|
|
||
|
# The set of valid metrics for KDTree at the time of writing this test is a
|
||
|
# strict subset of those supported in BallTree
|
||
|
metrics_not_kd = list(set(BallTree.valid_metrics) - set(KDTree.valid_metrics))
|
||
|
if len(metrics_not_kd) > 0:
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
HDBSCAN(algorithm="kd_tree", metric=metrics_not_kd[0]).fit(X)
|
||
|
|
||
|
|
||
|
def test_hdbscan_too_many_min_samples():
|
||
|
"""
|
||
|
Tests that HDBSCAN correctly raises an error when setting `min_samples`
|
||
|
larger than the number of samples.
|
||
|
"""
|
||
|
hdb = HDBSCAN(min_samples=len(X) + 1)
|
||
|
msg = r"min_samples (.*) must be at most"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
hdb.fit(X)
|
||
|
|
||
|
|
||
|
def test_hdbscan_precomputed_dense_nan():
|
||
|
"""
|
||
|
Tests that HDBSCAN correctly raises an error when providing precomputed
|
||
|
distances with `np.nan` values.
|
||
|
"""
|
||
|
X_nan = X.copy()
|
||
|
X_nan[0, 0] = np.nan
|
||
|
msg = "np.nan values found in precomputed-dense"
|
||
|
hdb = HDBSCAN(metric="precomputed")
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
hdb.fit(X_nan)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("allow_single_cluster", [True, False])
|
||
|
@pytest.mark.parametrize("epsilon", [0, 0.1])
|
||
|
def test_labelling_distinct(global_random_seed, allow_single_cluster, epsilon):
|
||
|
"""
|
||
|
Tests that the `_do_labelling` helper function correctly assigns labels.
|
||
|
"""
|
||
|
n_samples = 48
|
||
|
X, y = make_blobs(
|
||
|
n_samples,
|
||
|
random_state=global_random_seed,
|
||
|
# Ensure the clusters are distinct with no overlap
|
||
|
centers=[
|
||
|
[0, 0],
|
||
|
[10, 0],
|
||
|
[0, 10],
|
||
|
],
|
||
|
)
|
||
|
|
||
|
est = HDBSCAN().fit(X)
|
||
|
condensed_tree = _condense_tree(
|
||
|
est._single_linkage_tree_, min_cluster_size=est.min_cluster_size
|
||
|
)
|
||
|
clusters = {n_samples + 2, n_samples + 3, n_samples + 4}
|
||
|
cluster_label_map = {n_samples + 2: 0, n_samples + 3: 1, n_samples + 4: 2}
|
||
|
labels = _do_labelling(
|
||
|
condensed_tree=condensed_tree,
|
||
|
clusters=clusters,
|
||
|
cluster_label_map=cluster_label_map,
|
||
|
allow_single_cluster=allow_single_cluster,
|
||
|
cluster_selection_epsilon=epsilon,
|
||
|
)
|
||
|
|
||
|
first_with_label = {_y: np.where(y == _y)[0][0] for _y in list(set(y))}
|
||
|
y_to_labels = {_y: labels[first_with_label[_y]] for _y in list(set(y))}
|
||
|
aligned_target = np.vectorize(y_to_labels.get)(y)
|
||
|
assert_array_equal(labels, aligned_target)
|
||
|
|
||
|
|
||
|
def test_labelling_thresholding():
|
||
|
"""
|
||
|
Tests that the `_do_labelling` helper function correctly thresholds the
|
||
|
incoming lambda values given various `cluster_selection_epsilon` values.
|
||
|
"""
|
||
|
n_samples = 5
|
||
|
MAX_LAMBDA = 1.5
|
||
|
condensed_tree = np.array(
|
||
|
[
|
||
|
(5, 2, MAX_LAMBDA, 1),
|
||
|
(5, 1, 0.1, 1),
|
||
|
(5, 0, MAX_LAMBDA, 1),
|
||
|
(5, 3, 0.2, 1),
|
||
|
(5, 4, 0.3, 1),
|
||
|
],
|
||
|
dtype=CONDENSED_dtype,
|
||
|
)
|
||
|
labels = _do_labelling(
|
||
|
condensed_tree=condensed_tree,
|
||
|
clusters={n_samples},
|
||
|
cluster_label_map={n_samples: 0, n_samples + 1: 1},
|
||
|
allow_single_cluster=True,
|
||
|
cluster_selection_epsilon=1,
|
||
|
)
|
||
|
num_noise = condensed_tree["value"] < 1
|
||
|
assert sum(num_noise) == sum(labels == -1)
|
||
|
|
||
|
labels = _do_labelling(
|
||
|
condensed_tree=condensed_tree,
|
||
|
clusters={n_samples},
|
||
|
cluster_label_map={n_samples: 0, n_samples + 1: 1},
|
||
|
allow_single_cluster=True,
|
||
|
cluster_selection_epsilon=0,
|
||
|
)
|
||
|
# The threshold should be calculated per-sample based on the largest
|
||
|
# lambda of any simbling node. In this case, all points are siblings
|
||
|
# and the largest value is exactly MAX_LAMBDA.
|
||
|
num_noise = condensed_tree["value"] < MAX_LAMBDA
|
||
|
assert sum(num_noise) == sum(labels == -1)
|
||
|
|
||
|
|
||
|
# TODO(1.6): Remove
|
||
|
def test_hdbscan_warning_on_deprecated_algorithm_name():
|
||
|
# Test that warning message is shown when algorithm='kdtree'
|
||
|
msg = (
|
||
|
"`algorithm='kdtree'`has been deprecated in 1.4 and will be renamed"
|
||
|
" to'kd_tree'`in 1.6. To keep the past behaviour, set `algorithm='kd_tree'`."
|
||
|
)
|
||
|
with pytest.warns(FutureWarning, match=msg):
|
||
|
HDBSCAN(algorithm="kdtree").fit(X)
|
||
|
|
||
|
# Test that warning message is shown when algorithm='balltree'
|
||
|
msg = (
|
||
|
"`algorithm='balltree'`has been deprecated in 1.4 and will be renamed"
|
||
|
" to'ball_tree'`in 1.6. To keep the past behaviour, set"
|
||
|
" `algorithm='ball_tree'`."
|
||
|
)
|
||
|
with pytest.warns(FutureWarning, match=msg):
|
||
|
HDBSCAN(algorithm="balltree").fit(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("store_centers", ["centroid", "medoid"])
|
||
|
def test_hdbscan_error_precomputed_and_store_centers(store_centers):
|
||
|
"""Check that we raise an error if the centers are requested together with
|
||
|
a precomputed input matrix.
|
||
|
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/27893
|
||
|
"""
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.random((100, 2))
|
||
|
X_dist = euclidean_distances(X)
|
||
|
err_msg = "Cannot store centers when using a precomputed distance matrix."
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
HDBSCAN(metric="precomputed", store_centers=store_centers).fit(X_dist)
|