53 lines
1.5 KiB
Python
53 lines
1.5 KiB
Python
|
"""
|
||
|
Testing for Elliptic Envelope algorithm (sklearn.covariance.elliptic_envelope).
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from sklearn.covariance import EllipticEnvelope
|
||
|
from sklearn.exceptions import NotFittedError
|
||
|
from sklearn.utils._testing import (
|
||
|
assert_almost_equal,
|
||
|
assert_array_almost_equal,
|
||
|
assert_array_equal,
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_elliptic_envelope(global_random_seed):
|
||
|
rnd = np.random.RandomState(global_random_seed)
|
||
|
X = rnd.randn(100, 10)
|
||
|
clf = EllipticEnvelope(contamination=0.1)
|
||
|
with pytest.raises(NotFittedError):
|
||
|
clf.predict(X)
|
||
|
with pytest.raises(NotFittedError):
|
||
|
clf.decision_function(X)
|
||
|
clf.fit(X)
|
||
|
y_pred = clf.predict(X)
|
||
|
scores = clf.score_samples(X)
|
||
|
decisions = clf.decision_function(X)
|
||
|
|
||
|
assert_array_almost_equal(scores, -clf.mahalanobis(X))
|
||
|
assert_array_almost_equal(clf.mahalanobis(X), clf.dist_)
|
||
|
assert_almost_equal(
|
||
|
clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.0
|
||
|
)
|
||
|
assert sum(y_pred == -1) == sum(decisions < 0)
|
||
|
|
||
|
|
||
|
def test_score_samples():
|
||
|
X_train = [[1, 1], [1, 2], [2, 1]]
|
||
|
clf1 = EllipticEnvelope(contamination=0.2).fit(X_train)
|
||
|
clf2 = EllipticEnvelope().fit(X_train)
|
||
|
assert_array_equal(
|
||
|
clf1.score_samples([[2.0, 2.0]]),
|
||
|
clf1.decision_function([[2.0, 2.0]]) + clf1.offset_,
|
||
|
)
|
||
|
assert_array_equal(
|
||
|
clf2.score_samples([[2.0, 2.0]]),
|
||
|
clf2.decision_function([[2.0, 2.0]]) + clf2.offset_,
|
||
|
)
|
||
|
assert_array_equal(
|
||
|
clf1.score_samples([[2.0, 2.0]]), clf2.score_samples([[2.0, 2.0]])
|
||
|
)
|