ai-content-maker/.venv/Lib/site-packages/sklearn/datasets/tests/test_arff_parser.py

273 lines
7.9 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import textwrap
from io import BytesIO
import pytest
from sklearn.datasets._arff_parser import (
_liac_arff_parser,
_pandas_arff_parser,
_post_process_frame,
load_arff_from_gzip_file,
)
@pytest.mark.parametrize(
"feature_names, target_names",
[
(
[
"col_int_as_integer",
"col_int_as_numeric",
"col_float_as_real",
"col_float_as_numeric",
],
["col_categorical", "col_string"],
),
(
[
"col_int_as_integer",
"col_int_as_numeric",
"col_float_as_real",
"col_float_as_numeric",
],
["col_categorical"],
),
(
[
"col_int_as_integer",
"col_int_as_numeric",
"col_float_as_real",
"col_float_as_numeric",
],
[],
),
],
)
def test_post_process_frame(feature_names, target_names):
"""Check the behaviour of the post-processing function for splitting a dataframe."""
pd = pytest.importorskip("pandas")
X_original = pd.DataFrame(
{
"col_int_as_integer": [1, 2, 3],
"col_int_as_numeric": [1, 2, 3],
"col_float_as_real": [1.0, 2.0, 3.0],
"col_float_as_numeric": [1.0, 2.0, 3.0],
"col_categorical": ["a", "b", "c"],
"col_string": ["a", "b", "c"],
}
)
X, y = _post_process_frame(X_original, feature_names, target_names)
assert isinstance(X, pd.DataFrame)
if len(target_names) >= 2:
assert isinstance(y, pd.DataFrame)
elif len(target_names) == 1:
assert isinstance(y, pd.Series)
else:
assert y is None
def test_load_arff_from_gzip_file_error_parser():
"""An error will be raised if the parser is not known."""
# None of the input parameters are required to be accurate since the check
# of the parser will be carried out first.
err_msg = "Unknown parser: 'xxx'. Should be 'liac-arff' or 'pandas'"
with pytest.raises(ValueError, match=err_msg):
load_arff_from_gzip_file("xxx", "xxx", "xxx", "xxx", "xxx", "xxx")
@pytest.mark.parametrize("parser_func", [_liac_arff_parser, _pandas_arff_parser])
def test_pandas_arff_parser_strip_single_quotes(parser_func):
"""Check that we properly strip single quotes from the data."""
pd = pytest.importorskip("pandas")
arff_file = BytesIO(textwrap.dedent("""
@relation 'toy'
@attribute 'cat_single_quote' {'A', 'B', 'C'}
@attribute 'str_single_quote' string
@attribute 'str_nested_quote' string
@attribute 'class' numeric
@data
'A','some text','\"expect double quotes\"',0
""").encode("utf-8"))
columns_info = {
"cat_single_quote": {
"data_type": "nominal",
"name": "cat_single_quote",
},
"str_single_quote": {
"data_type": "string",
"name": "str_single_quote",
},
"str_nested_quote": {
"data_type": "string",
"name": "str_nested_quote",
},
"class": {
"data_type": "numeric",
"name": "class",
},
}
feature_names = [
"cat_single_quote",
"str_single_quote",
"str_nested_quote",
]
target_names = ["class"]
# We don't strip single quotes for string columns with the pandas parser.
expected_values = {
"cat_single_quote": "A",
"str_single_quote": (
"some text" if parser_func is _liac_arff_parser else "'some text'"
),
"str_nested_quote": (
'"expect double quotes"'
if parser_func is _liac_arff_parser
else "'\"expect double quotes\"'"
),
"class": 0,
}
_, _, frame, _ = parser_func(
arff_file,
output_arrays_type="pandas",
openml_columns_info=columns_info,
feature_names_to_select=feature_names,
target_names_to_select=target_names,
)
assert frame.columns.tolist() == feature_names + target_names
pd.testing.assert_series_equal(frame.iloc[0], pd.Series(expected_values, name=0))
@pytest.mark.parametrize("parser_func", [_liac_arff_parser, _pandas_arff_parser])
def test_pandas_arff_parser_strip_double_quotes(parser_func):
"""Check that we properly strip double quotes from the data."""
pd = pytest.importorskip("pandas")
arff_file = BytesIO(textwrap.dedent("""
@relation 'toy'
@attribute 'cat_double_quote' {"A", "B", "C"}
@attribute 'str_double_quote' string
@attribute 'str_nested_quote' string
@attribute 'class' numeric
@data
"A","some text","\'expect double quotes\'",0
""").encode("utf-8"))
columns_info = {
"cat_double_quote": {
"data_type": "nominal",
"name": "cat_double_quote",
},
"str_double_quote": {
"data_type": "string",
"name": "str_double_quote",
},
"str_nested_quote": {
"data_type": "string",
"name": "str_nested_quote",
},
"class": {
"data_type": "numeric",
"name": "class",
},
}
feature_names = [
"cat_double_quote",
"str_double_quote",
"str_nested_quote",
]
target_names = ["class"]
expected_values = {
"cat_double_quote": "A",
"str_double_quote": "some text",
"str_nested_quote": "'expect double quotes'",
"class": 0,
}
_, _, frame, _ = parser_func(
arff_file,
output_arrays_type="pandas",
openml_columns_info=columns_info,
feature_names_to_select=feature_names,
target_names_to_select=target_names,
)
assert frame.columns.tolist() == feature_names + target_names
pd.testing.assert_series_equal(frame.iloc[0], pd.Series(expected_values, name=0))
@pytest.mark.parametrize(
"parser_func",
[
# internal quotes are not considered to follow the ARFF spec in LIAC ARFF
pytest.param(_liac_arff_parser, marks=pytest.mark.xfail),
_pandas_arff_parser,
],
)
def test_pandas_arff_parser_strip_no_quotes(parser_func):
"""Check that we properly parse with no quotes characters."""
pd = pytest.importorskip("pandas")
arff_file = BytesIO(textwrap.dedent("""
@relation 'toy'
@attribute 'cat_without_quote' {A, B, C}
@attribute 'str_without_quote' string
@attribute 'str_internal_quote' string
@attribute 'class' numeric
@data
A,some text,'internal' quote,0
""").encode("utf-8"))
columns_info = {
"cat_without_quote": {
"data_type": "nominal",
"name": "cat_without_quote",
},
"str_without_quote": {
"data_type": "string",
"name": "str_without_quote",
},
"str_internal_quote": {
"data_type": "string",
"name": "str_internal_quote",
},
"class": {
"data_type": "numeric",
"name": "class",
},
}
feature_names = [
"cat_without_quote",
"str_without_quote",
"str_internal_quote",
]
target_names = ["class"]
expected_values = {
"cat_without_quote": "A",
"str_without_quote": "some text",
"str_internal_quote": "'internal' quote",
"class": 0,
}
_, _, frame, _ = parser_func(
arff_file,
output_arrays_type="pandas",
openml_columns_info=columns_info,
feature_names_to_select=feature_names,
target_names_to_select=target_names,
)
assert frame.columns.tolist() == feature_names + target_names
pd.testing.assert_series_equal(frame.iloc[0], pd.Series(expected_values, name=0))