ai-content-maker/.venv/Lib/site-packages/sklearn/tests/test_docstrings.py

209 lines
6.7 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import re
from inspect import signature
from typing import Optional
import pytest
# make it possible to discover experimental estimators when calling `all_estimators`
from sklearn.experimental import (
enable_halving_search_cv, # noqa
enable_iterative_imputer, # noqa
)
from sklearn.utils.discovery import all_displays, all_estimators, all_functions
numpydoc_validation = pytest.importorskip("numpydoc.validate")
def get_all_methods():
estimators = all_estimators()
displays = all_displays()
for name, Klass in estimators + displays:
if name.startswith("_"):
# skip private classes
continue
methods = []
for name in dir(Klass):
if name.startswith("_"):
continue
method_obj = getattr(Klass, name)
if hasattr(method_obj, "__call__") or isinstance(method_obj, property):
methods.append(name)
methods.append(None)
for method in sorted(methods, key=str):
yield Klass, method
def get_all_functions_names():
functions = all_functions()
for _, func in functions:
# exclude functions from utils.fixex since they come from external packages
if "utils.fixes" not in func.__module__:
yield f"{func.__module__}.{func.__name__}"
def filter_errors(errors, method, Klass=None):
"""
Ignore some errors based on the method type.
These rules are specific for scikit-learn."""
for code, message in errors:
# We ignore following error code,
# - RT02: The first line of the Returns section
# should contain only the type, ..
# (as we may need refer to the name of the returned
# object)
# - GL01: Docstring text (summary) should start in the line
# immediately after the opening quotes (not in the same line,
# or leaving a blank line in between)
# - GL02: If there's a blank line, it should be before the
# first line of the Returns section, not after (it allows to have
# short docstrings for properties).
if code in ["RT02", "GL01", "GL02"]:
continue
# Ignore PR02: Unknown parameters for properties. We sometimes use
# properties for ducktyping, i.e. SGDClassifier.predict_proba
# Ignore GL08: Parsing of the method signature failed, possibly because this is
# a property. Properties are sometimes used for deprecated attributes and the
# attribute is already documented in the class docstring.
#
# All error codes:
# https://numpydoc.readthedocs.io/en/latest/validation.html#built-in-validation-checks
if code in ("PR02", "GL08") and Klass is not None and method is not None:
method_obj = getattr(Klass, method)
if isinstance(method_obj, property):
continue
# Following codes are only taken into account for the
# top level class docstrings:
# - ES01: No extended summary found
# - SA01: See Also section not found
# - EX01: No examples section found
if method is not None and code in ["EX01", "SA01", "ES01"]:
continue
yield code, message
def repr_errors(res, Klass=None, method: Optional[str] = None) -> str:
"""Pretty print original docstring and the obtained errors
Parameters
----------
res : dict
result of numpydoc.validate.validate
Klass : {Estimator, Display, None}
estimator object or None
method : str
if estimator is not None, either the method name or None.
Returns
-------
str
String representation of the error.
"""
if method is None:
if hasattr(Klass, "__init__"):
method = "__init__"
elif Klass is None:
raise ValueError("At least one of Klass, method should be provided")
else:
raise NotImplementedError
if Klass is not None:
obj = getattr(Klass, method)
try:
obj_signature = str(signature(obj))
except TypeError:
# In particular we can't parse the signature of properties
obj_signature = (
"\nParsing of the method signature failed, "
"possibly because this is a property."
)
obj_name = Klass.__name__ + "." + method
else:
obj_signature = ""
obj_name = method
msg = "\n\n" + "\n\n".join(
[
str(res["file"]),
obj_name + obj_signature,
res["docstring"],
"# Errors",
"\n".join(
" - {}: {}".format(code, message) for code, message in res["errors"]
),
]
)
return msg
@pytest.mark.parametrize("function_name", get_all_functions_names())
def test_function_docstring(function_name, request):
"""Check function docstrings using numpydoc."""
res = numpydoc_validation.validate(function_name)
res["errors"] = list(filter_errors(res["errors"], method="function"))
if res["errors"]:
msg = repr_errors(res, method=f"Tested function: {function_name}")
raise ValueError(msg)
@pytest.mark.parametrize("Klass, method", get_all_methods())
def test_docstring(Klass, method, request):
base_import_path = Klass.__module__
import_path = [base_import_path, Klass.__name__]
if method is not None:
import_path.append(method)
import_path = ".".join(import_path)
res = numpydoc_validation.validate(import_path)
res["errors"] = list(filter_errors(res["errors"], method, Klass=Klass))
if res["errors"]:
msg = repr_errors(res, Klass, method)
raise ValueError(msg)
if __name__ == "__main__":
import argparse
import sys
parser = argparse.ArgumentParser(description="Validate docstring with numpydoc.")
parser.add_argument("import_path", help="Import path to validate")
args = parser.parse_args()
res = numpydoc_validation.validate(args.import_path)
import_path_sections = args.import_path.split(".")
# When applied to classes, detect class method. For functions
# method = None.
# TODO: this detection can be improved. Currently we assume that we have
# class # methods if the second path element before last is in camel case.
if len(import_path_sections) >= 2 and re.match(
r"(?:[A-Z][a-z]*)+", import_path_sections[-2]
):
method = import_path_sections[-1]
else:
method = None
res["errors"] = list(filter_errors(res["errors"], method))
if res["errors"]:
msg = repr_errors(res, method=args.import_path)
print(msg)
sys.exit(1)
else:
print("All docstring checks passed for {}!".format(args.import_path))