ai-content-maker/.venv/Lib/site-packages/sklearn/tests/test_metadata_routing.py

1009 lines
34 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""
Metadata Routing Utility Tests
"""
# Author: Adrin Jalali <adrin.jalali@gmail.com>
# License: BSD 3 clause
import re
import numpy as np
import pytest
from sklearn import config_context
from sklearn.base import (
BaseEstimator,
clone,
)
from sklearn.linear_model import LinearRegression
from sklearn.tests.metadata_routing_common import (
ConsumingClassifier,
ConsumingRegressor,
ConsumingTransformer,
MetaRegressor,
MetaTransformer,
NonConsumingClassifier,
WeightedMetaClassifier,
WeightedMetaRegressor,
_Registry,
assert_request_equal,
assert_request_is_empty,
check_recorded_metadata,
)
from sklearn.utils import metadata_routing
from sklearn.utils._metadata_requests import (
COMPOSITE_METHODS,
METHODS,
SIMPLE_METHODS,
MethodMetadataRequest,
MethodPair,
_MetadataRequester,
request_is_alias,
request_is_valid,
)
from sklearn.utils.metadata_routing import (
MetadataRequest,
MetadataRouter,
MethodMapping,
_RoutingNotSupportedMixin,
get_routing_for_object,
process_routing,
)
from sklearn.utils.validation import check_is_fitted
rng = np.random.RandomState(42)
N, M = 100, 4
X = rng.rand(N, M)
y = rng.randint(0, 2, size=N)
my_groups = rng.randint(0, 10, size=N)
my_weights = rng.rand(N)
my_other_weights = rng.rand(N)
@pytest.fixture(autouse=True)
def enable_slep006():
"""Enable SLEP006 for all tests."""
with config_context(enable_metadata_routing=True):
yield
class SimplePipeline(BaseEstimator):
"""A very simple pipeline, assuming the last step is always a predictor."""
def __init__(self, steps):
self.steps = steps
def fit(self, X, y, **fit_params):
self.steps_ = []
params = process_routing(self, "fit", **fit_params)
X_transformed = X
for i, step in enumerate(self.steps[:-1]):
transformer = clone(step).fit(
X_transformed, y, **params.get(f"step_{i}").fit
)
self.steps_.append(transformer)
X_transformed = transformer.transform(
X_transformed, **params.get(f"step_{i}").transform
)
self.steps_.append(
clone(self.steps[-1]).fit(X_transformed, y, **params.predictor.fit)
)
return self
def predict(self, X, **predict_params):
check_is_fitted(self)
X_transformed = X
params = process_routing(self, "predict", **predict_params)
for i, step in enumerate(self.steps_[:-1]):
X_transformed = step.transform(X, **params.get(f"step_{i}").transform)
return self.steps_[-1].predict(X_transformed, **params.predictor.predict)
def get_metadata_routing(self):
router = MetadataRouter(owner=self.__class__.__name__)
for i, step in enumerate(self.steps[:-1]):
router.add(
**{f"step_{i}": step},
method_mapping=MethodMapping()
.add(callee="fit", caller="fit")
.add(callee="transform", caller="fit")
.add(callee="transform", caller="predict"),
)
router.add(predictor=self.steps[-1], method_mapping="one-to-one")
return router
def test_assert_request_is_empty():
requests = MetadataRequest(owner="test")
assert_request_is_empty(requests)
requests.fit.add_request(param="foo", alias=None)
# this should still work, since None is the default value
assert_request_is_empty(requests)
requests.fit.add_request(param="bar", alias="value")
with pytest.raises(AssertionError):
# now requests is no more empty
assert_request_is_empty(requests)
# but one can exclude a method
assert_request_is_empty(requests, exclude="fit")
requests.score.add_request(param="carrot", alias=True)
with pytest.raises(AssertionError):
# excluding `fit` is not enough
assert_request_is_empty(requests, exclude="fit")
# and excluding both fit and score would avoid an exception
assert_request_is_empty(requests, exclude=["fit", "score"])
# test if a router is empty
assert_request_is_empty(
MetadataRouter(owner="test")
.add_self_request(WeightedMetaRegressor(estimator=None))
.add(method_mapping="fit", estimator=ConsumingRegressor())
)
@pytest.mark.parametrize(
"estimator",
[
ConsumingClassifier(registry=_Registry()),
ConsumingRegressor(registry=_Registry()),
ConsumingTransformer(registry=_Registry()),
WeightedMetaClassifier(estimator=ConsumingClassifier(), registry=_Registry()),
WeightedMetaRegressor(estimator=ConsumingRegressor(), registry=_Registry()),
],
)
def test_estimator_puts_self_in_registry(estimator):
"""Check that an estimator puts itself in the registry upon fit."""
estimator.fit(X, y)
assert estimator in estimator.registry
@pytest.mark.parametrize(
"val, res",
[
(False, False),
(True, False),
(None, False),
("$UNUSED$", False),
("$WARN$", False),
("invalid-input", False),
("valid_arg", True),
],
)
def test_request_type_is_alias(val, res):
# Test request_is_alias
assert request_is_alias(val) == res
@pytest.mark.parametrize(
"val, res",
[
(False, True),
(True, True),
(None, True),
("$UNUSED$", True),
("$WARN$", True),
("invalid-input", False),
("alias_arg", False),
],
)
def test_request_type_is_valid(val, res):
# Test request_is_valid
assert request_is_valid(val) == res
def test_default_requests():
class OddEstimator(BaseEstimator):
__metadata_request__fit = {
# set a different default request
"sample_weight": True
} # type: ignore
odd_request = get_routing_for_object(OddEstimator())
assert odd_request.fit.requests == {"sample_weight": True}
# check other test estimators
assert not len(get_routing_for_object(NonConsumingClassifier()).fit.requests)
assert_request_is_empty(NonConsumingClassifier().get_metadata_routing())
trs_request = get_routing_for_object(ConsumingTransformer())
assert trs_request.fit.requests == {
"sample_weight": None,
"metadata": None,
}
assert trs_request.transform.requests == {"metadata": None, "sample_weight": None}
assert_request_is_empty(trs_request)
est_request = get_routing_for_object(ConsumingClassifier())
assert est_request.fit.requests == {
"sample_weight": None,
"metadata": None,
}
assert_request_is_empty(est_request)
def test_process_routing_invalid_method():
with pytest.raises(TypeError, match="Can only route and process input"):
process_routing(ConsumingClassifier(), "invalid_method", groups=my_groups)
def test_process_routing_invalid_object():
class InvalidObject:
pass
with pytest.raises(AttributeError, match="either implement the routing method"):
process_routing(InvalidObject(), "fit", groups=my_groups)
@pytest.mark.parametrize("method", METHODS)
@pytest.mark.parametrize("default", [None, "default", []])
def test_process_routing_empty_params_get_with_default(method, default):
empty_params = {}
routed_params = process_routing(ConsumingClassifier(), "fit", **empty_params)
# Behaviour should be an empty dictionary returned for each method when retrieved.
params_for_method = routed_params[method]
assert isinstance(params_for_method, dict)
assert set(params_for_method.keys()) == set(METHODS)
# No default to `get` should be equivalent to the default
default_params_for_method = routed_params.get(method, default=default)
assert default_params_for_method == params_for_method
def test_simple_metadata_routing():
# Tests that metadata is properly routed
# The underlying estimator doesn't accept or request metadata
clf = WeightedMetaClassifier(estimator=NonConsumingClassifier())
clf.fit(X, y)
# Meta-estimator consumes sample_weight, but doesn't forward it to the underlying
# estimator
clf = WeightedMetaClassifier(estimator=NonConsumingClassifier())
clf.fit(X, y, sample_weight=my_weights)
# If the estimator accepts the metadata but doesn't explicitly say it doesn't
# need it, there's an error
clf = WeightedMetaClassifier(estimator=ConsumingClassifier())
err_message = (
"[sample_weight] are passed but are not explicitly set as requested or"
" not for ConsumingClassifier.fit"
)
with pytest.raises(ValueError, match=re.escape(err_message)):
clf.fit(X, y, sample_weight=my_weights)
# Explicitly saying the estimator doesn't need it, makes the error go away,
# because in this case `WeightedMetaClassifier` consumes `sample_weight`. If
# there was no consumer of sample_weight, passing it would result in an
# error.
clf = WeightedMetaClassifier(
estimator=ConsumingClassifier().set_fit_request(sample_weight=False)
)
# this doesn't raise since WeightedMetaClassifier itself is a consumer,
# and passing metadata to the consumer directly is fine regardless of its
# metadata_request values.
clf.fit(X, y, sample_weight=my_weights)
check_recorded_metadata(clf.estimator_, "fit")
# Requesting a metadata will make the meta-estimator forward it correctly
clf = WeightedMetaClassifier(
estimator=ConsumingClassifier().set_fit_request(sample_weight=True)
)
clf.fit(X, y, sample_weight=my_weights)
check_recorded_metadata(clf.estimator_, "fit", sample_weight=my_weights)
# And requesting it with an alias
clf = WeightedMetaClassifier(
estimator=ConsumingClassifier().set_fit_request(
sample_weight="alternative_weight"
)
)
clf.fit(X, y, alternative_weight=my_weights)
check_recorded_metadata(clf.estimator_, "fit", sample_weight=my_weights)
def test_nested_routing():
# check if metadata is routed in a nested routing situation.
pipeline = SimplePipeline(
[
MetaTransformer(
transformer=ConsumingTransformer()
.set_fit_request(metadata=True, sample_weight=False)
.set_transform_request(sample_weight=True, metadata=False)
),
WeightedMetaRegressor(
estimator=ConsumingRegressor()
.set_fit_request(sample_weight="inner_weights", metadata=False)
.set_predict_request(sample_weight=False)
).set_fit_request(sample_weight="outer_weights"),
]
)
w1, w2, w3 = [1], [2], [3]
pipeline.fit(
X, y, metadata=my_groups, sample_weight=w1, outer_weights=w2, inner_weights=w3
)
check_recorded_metadata(
pipeline.steps_[0].transformer_, "fit", metadata=my_groups, sample_weight=None
)
check_recorded_metadata(
pipeline.steps_[0].transformer_, "transform", sample_weight=w1, metadata=None
)
check_recorded_metadata(pipeline.steps_[1], "fit", sample_weight=w2)
check_recorded_metadata(pipeline.steps_[1].estimator_, "fit", sample_weight=w3)
pipeline.predict(X, sample_weight=w3)
check_recorded_metadata(
pipeline.steps_[0].transformer_, "transform", sample_weight=w3, metadata=None
)
def test_nested_routing_conflict():
# check if an error is raised if there's a conflict between keys
pipeline = SimplePipeline(
[
MetaTransformer(
transformer=ConsumingTransformer()
.set_fit_request(metadata=True, sample_weight=False)
.set_transform_request(sample_weight=True)
),
WeightedMetaRegressor(
estimator=ConsumingRegressor().set_fit_request(sample_weight=True)
).set_fit_request(sample_weight="outer_weights"),
]
)
w1, w2 = [1], [2]
with pytest.raises(
ValueError,
match=(
re.escape(
"In WeightedMetaRegressor, there is a conflict on sample_weight between"
" what is requested for this estimator and what is requested by its"
" children. You can resolve this conflict by using an alias for the"
" child estimator(s) requested metadata."
)
),
):
pipeline.fit(X, y, metadata=my_groups, sample_weight=w1, outer_weights=w2)
def test_invalid_metadata():
# check that passing wrong metadata raises an error
trs = MetaTransformer(
transformer=ConsumingTransformer().set_transform_request(sample_weight=True)
)
with pytest.raises(
TypeError,
match=(re.escape("transform got unexpected argument(s) {'other_param'}")),
):
trs.fit(X, y).transform(X, other_param=my_weights)
# passing a metadata which is not requested by any estimator should also raise
trs = MetaTransformer(
transformer=ConsumingTransformer().set_transform_request(sample_weight=False)
)
with pytest.raises(
TypeError,
match=(re.escape("transform got unexpected argument(s) {'sample_weight'}")),
):
trs.fit(X, y).transform(X, sample_weight=my_weights)
def test_get_metadata_routing():
class TestDefaultsBadMethodName(_MetadataRequester):
__metadata_request__fit = {
"sample_weight": None,
"my_param": None,
}
__metadata_request__score = {
"sample_weight": None,
"my_param": True,
"my_other_param": None,
}
# this will raise an error since we don't understand "other_method" as a method
__metadata_request__other_method = {"my_param": True}
class TestDefaults(_MetadataRequester):
__metadata_request__fit = {
"sample_weight": None,
"my_other_param": None,
}
__metadata_request__score = {
"sample_weight": None,
"my_param": True,
"my_other_param": None,
}
__metadata_request__predict = {"my_param": True}
with pytest.raises(
AttributeError, match="'MetadataRequest' object has no attribute 'other_method'"
):
TestDefaultsBadMethodName().get_metadata_routing()
expected = {
"score": {
"my_param": True,
"my_other_param": None,
"sample_weight": None,
},
"fit": {
"my_other_param": None,
"sample_weight": None,
},
"predict": {"my_param": True},
}
assert_request_equal(TestDefaults().get_metadata_routing(), expected)
est = TestDefaults().set_score_request(my_param="other_param")
expected = {
"score": {
"my_param": "other_param",
"my_other_param": None,
"sample_weight": None,
},
"fit": {
"my_other_param": None,
"sample_weight": None,
},
"predict": {"my_param": True},
}
assert_request_equal(est.get_metadata_routing(), expected)
est = TestDefaults().set_fit_request(sample_weight=True)
expected = {
"score": {
"my_param": True,
"my_other_param": None,
"sample_weight": None,
},
"fit": {
"my_other_param": None,
"sample_weight": True,
},
"predict": {"my_param": True},
}
assert_request_equal(est.get_metadata_routing(), expected)
def test_setting_default_requests():
# Test _get_default_requests method
test_cases = dict()
class ExplicitRequest(BaseEstimator):
# `fit` doesn't accept `props` explicitly, but we want to request it
__metadata_request__fit = {"prop": None}
def fit(self, X, y, **kwargs):
return self
test_cases[ExplicitRequest] = {"prop": None}
class ExplicitRequestOverwrite(BaseEstimator):
# `fit` explicitly accepts `props`, but we want to change the default
# request value from None to True
__metadata_request__fit = {"prop": True}
def fit(self, X, y, prop=None, **kwargs):
return self
test_cases[ExplicitRequestOverwrite] = {"prop": True}
class ImplicitRequest(BaseEstimator):
# `fit` requests `prop` and the default None should be used
def fit(self, X, y, prop=None, **kwargs):
return self
test_cases[ImplicitRequest] = {"prop": None}
class ImplicitRequestRemoval(BaseEstimator):
# `fit` (in this class or a parent) requests `prop`, but we don't want
# it requested at all.
__metadata_request__fit = {"prop": metadata_routing.UNUSED}
def fit(self, X, y, prop=None, **kwargs):
return self
test_cases[ImplicitRequestRemoval] = {}
for Klass, requests in test_cases.items():
assert get_routing_for_object(Klass()).fit.requests == requests
assert_request_is_empty(Klass().get_metadata_routing(), exclude="fit")
Klass().fit(None, None) # for coverage
def test_removing_non_existing_param_raises():
"""Test that removing a metadata using UNUSED which doesn't exist raises."""
class InvalidRequestRemoval(BaseEstimator):
# `fit` (in this class or a parent) requests `prop`, but we don't want
# it requested at all.
__metadata_request__fit = {"prop": metadata_routing.UNUSED}
def fit(self, X, y, **kwargs):
return self
with pytest.raises(ValueError, match="Trying to remove parameter"):
InvalidRequestRemoval().get_metadata_routing()
def test_method_metadata_request():
mmr = MethodMetadataRequest(owner="test", method="fit")
with pytest.raises(ValueError, match="The alias you're setting for"):
mmr.add_request(param="foo", alias=1.4)
mmr.add_request(param="foo", alias=None)
assert mmr.requests == {"foo": None}
mmr.add_request(param="foo", alias=False)
assert mmr.requests == {"foo": False}
mmr.add_request(param="foo", alias=True)
assert mmr.requests == {"foo": True}
mmr.add_request(param="foo", alias="foo")
assert mmr.requests == {"foo": True}
mmr.add_request(param="foo", alias="bar")
assert mmr.requests == {"foo": "bar"}
assert mmr._get_param_names(return_alias=False) == {"foo"}
assert mmr._get_param_names(return_alias=True) == {"bar"}
def test_get_routing_for_object():
class Consumer(BaseEstimator):
__metadata_request__fit = {"prop": None}
assert_request_is_empty(get_routing_for_object(None))
assert_request_is_empty(get_routing_for_object(object()))
mr = MetadataRequest(owner="test")
mr.fit.add_request(param="foo", alias="bar")
mr_factory = get_routing_for_object(mr)
assert_request_is_empty(mr_factory, exclude="fit")
assert mr_factory.fit.requests == {"foo": "bar"}
mr = get_routing_for_object(Consumer())
assert_request_is_empty(mr, exclude="fit")
assert mr.fit.requests == {"prop": None}
def test_metadata_request_consumes_method():
"""Test that MetadataRequest().consumes() method works as expected."""
request = MetadataRouter(owner="test")
assert request.consumes(method="fit", params={"foo"}) == set()
request = MetadataRequest(owner="test")
request.fit.add_request(param="foo", alias=True)
assert request.consumes(method="fit", params={"foo"}) == {"foo"}
request = MetadataRequest(owner="test")
request.fit.add_request(param="foo", alias="bar")
assert request.consumes(method="fit", params={"bar", "foo"}) == {"bar"}
def test_metadata_router_consumes_method():
"""Test that MetadataRouter().consumes method works as expected."""
# having it here instead of parametrizing the test since `set_fit_request`
# is not available while collecting the tests.
cases = [
(
WeightedMetaRegressor(
estimator=ConsumingRegressor().set_fit_request(sample_weight=True)
),
{"sample_weight"},
{"sample_weight"},
),
(
WeightedMetaRegressor(
estimator=ConsumingRegressor().set_fit_request(
sample_weight="my_weights"
)
),
{"my_weights", "sample_weight"},
{"my_weights"},
),
]
for obj, input, output in cases:
assert obj.get_metadata_routing().consumes(method="fit", params=input) == output
def test_metaestimator_warnings():
class WeightedMetaRegressorWarn(WeightedMetaRegressor):
__metadata_request__fit = {"sample_weight": metadata_routing.WARN}
with pytest.warns(
UserWarning, match="Support for .* has recently been added to this class"
):
WeightedMetaRegressorWarn(
estimator=LinearRegression().set_fit_request(sample_weight=False)
).fit(X, y, sample_weight=my_weights)
def test_estimator_warnings():
class ConsumingRegressorWarn(ConsumingRegressor):
__metadata_request__fit = {"sample_weight": metadata_routing.WARN}
with pytest.warns(
UserWarning, match="Support for .* has recently been added to this class"
):
MetaRegressor(estimator=ConsumingRegressorWarn()).fit(
X, y, sample_weight=my_weights
)
@pytest.mark.parametrize(
"obj, string",
[
(
MethodMetadataRequest(owner="test", method="fit").add_request(
param="foo", alias="bar"
),
"{'foo': 'bar'}",
),
(
MetadataRequest(owner="test"),
"{}",
),
(MethodMapping.from_str("score"), "[{'callee': 'score', 'caller': 'score'}]"),
(
MetadataRouter(owner="test").add(
method_mapping="predict", estimator=ConsumingRegressor()
),
(
"{'estimator': {'mapping': [{'callee': 'predict', 'caller':"
" 'predict'}], 'router': {'fit': {'sample_weight': None, 'metadata':"
" None}, 'partial_fit': {'sample_weight': None, 'metadata': None},"
" 'predict': {'sample_weight': None, 'metadata': None}, 'score':"
" {'sample_weight': None}}}}"
),
),
],
)
def test_string_representations(obj, string):
assert str(obj) == string
@pytest.mark.parametrize(
"obj, method, inputs, err_cls, err_msg",
[
(
MethodMapping(),
"add",
{"callee": "invalid", "caller": "fit"},
ValueError,
"Given callee",
),
(
MethodMapping(),
"add",
{"callee": "fit", "caller": "invalid"},
ValueError,
"Given caller",
),
(
MethodMapping,
"from_str",
{"route": "invalid"},
ValueError,
"route should be 'one-to-one' or a single method!",
),
(
MetadataRouter(owner="test"),
"add_self_request",
{"obj": MetadataRouter(owner="test")},
ValueError,
"Given `obj` is neither a `MetadataRequest` nor does it implement",
),
(
ConsumingClassifier(),
"set_fit_request",
{"invalid": True},
TypeError,
"Unexpected args",
),
],
)
def test_validations(obj, method, inputs, err_cls, err_msg):
with pytest.raises(err_cls, match=err_msg):
getattr(obj, method)(**inputs)
def test_methodmapping():
mm = (
MethodMapping()
.add(caller="fit", callee="transform")
.add(caller="fit", callee="fit")
)
mm_list = list(mm)
assert mm_list[0] == ("transform", "fit")
assert mm_list[1] == ("fit", "fit")
mm = MethodMapping.from_str("one-to-one")
for method in METHODS:
assert MethodPair(method, method) in mm._routes
assert len(mm._routes) == len(METHODS)
mm = MethodMapping.from_str("score")
assert repr(mm) == "[{'callee': 'score', 'caller': 'score'}]"
def test_metadatarouter_add_self_request():
# adding a MetadataRequest as `self` adds a copy
request = MetadataRequest(owner="nested")
request.fit.add_request(param="param", alias=True)
router = MetadataRouter(owner="test").add_self_request(request)
assert str(router._self_request) == str(request)
# should be a copy, not the same object
assert router._self_request is not request
# one can add an estimator as self
est = ConsumingRegressor().set_fit_request(sample_weight="my_weights")
router = MetadataRouter(owner="test").add_self_request(obj=est)
assert str(router._self_request) == str(est.get_metadata_routing())
assert router._self_request is not est.get_metadata_routing()
# adding a consumer+router as self should only add the consumer part
est = WeightedMetaRegressor(
estimator=ConsumingRegressor().set_fit_request(sample_weight="nested_weights")
)
router = MetadataRouter(owner="test").add_self_request(obj=est)
# _get_metadata_request() returns the consumer part of the requests
assert str(router._self_request) == str(est._get_metadata_request())
# get_metadata_routing() returns the complete request set, consumer and
# router included.
assert str(router._self_request) != str(est.get_metadata_routing())
# it should be a copy, not the same object
assert router._self_request is not est._get_metadata_request()
def test_metadata_routing_add():
# adding one with a string `method_mapping`
router = MetadataRouter(owner="test").add(
method_mapping="fit",
est=ConsumingRegressor().set_fit_request(sample_weight="weights"),
)
assert (
str(router)
== "{'est': {'mapping': [{'callee': 'fit', 'caller': 'fit'}], 'router': {'fit':"
" {'sample_weight': 'weights', 'metadata': None}, 'partial_fit':"
" {'sample_weight': None, 'metadata': None}, 'predict': {'sample_weight':"
" None, 'metadata': None}, 'score': {'sample_weight': None}}}}"
)
# adding one with an instance of MethodMapping
router = MetadataRouter(owner="test").add(
method_mapping=MethodMapping().add(callee="score", caller="fit"),
est=ConsumingRegressor().set_score_request(sample_weight=True),
)
assert (
str(router)
== "{'est': {'mapping': [{'callee': 'score', 'caller': 'fit'}], 'router':"
" {'fit': {'sample_weight': None, 'metadata': None}, 'partial_fit':"
" {'sample_weight': None, 'metadata': None}, 'predict': {'sample_weight':"
" None, 'metadata': None}, 'score': {'sample_weight': True}}}}"
)
def test_metadata_routing_get_param_names():
router = (
MetadataRouter(owner="test")
.add_self_request(
WeightedMetaRegressor(estimator=ConsumingRegressor()).set_fit_request(
sample_weight="self_weights"
)
)
.add(
method_mapping="fit",
trs=ConsumingTransformer().set_fit_request(
sample_weight="transform_weights"
),
)
)
assert (
str(router)
== "{'$self_request': {'fit': {'sample_weight': 'self_weights'}, 'score':"
" {'sample_weight': None}}, 'trs': {'mapping': [{'callee': 'fit', 'caller':"
" 'fit'}], 'router': {'fit': {'sample_weight': 'transform_weights',"
" 'metadata': None}, 'transform': {'sample_weight': None, 'metadata': None},"
" 'inverse_transform': {'sample_weight': None, 'metadata': None}}}}"
)
assert router._get_param_names(
method="fit", return_alias=True, ignore_self_request=False
) == {"transform_weights", "metadata", "self_weights"}
# return_alias=False will return original names for "self"
assert router._get_param_names(
method="fit", return_alias=False, ignore_self_request=False
) == {"sample_weight", "metadata", "transform_weights"}
# ignoring self would remove "sample_weight"
assert router._get_param_names(
method="fit", return_alias=False, ignore_self_request=True
) == {"metadata", "transform_weights"}
# return_alias is ignored when ignore_self_request=True
assert router._get_param_names(
method="fit", return_alias=True, ignore_self_request=True
) == router._get_param_names(
method="fit", return_alias=False, ignore_self_request=True
)
def test_method_generation():
# Test if all required request methods are generated.
# TODO: these test classes can be moved to sklearn.utils._testing once we
# have a better idea of what the commonly used classes are.
class SimpleEstimator(BaseEstimator):
# This class should have no set_{method}_request
def fit(self, X, y):
pass # pragma: no cover
def fit_transform(self, X, y):
pass # pragma: no cover
def fit_predict(self, X, y):
pass # pragma: no cover
def partial_fit(self, X, y):
pass # pragma: no cover
def predict(self, X):
pass # pragma: no cover
def predict_proba(self, X):
pass # pragma: no cover
def predict_log_proba(self, X):
pass # pragma: no cover
def decision_function(self, X):
pass # pragma: no cover
def score(self, X, y):
pass # pragma: no cover
def split(self, X, y=None):
pass # pragma: no cover
def transform(self, X):
pass # pragma: no cover
def inverse_transform(self, X):
pass # pragma: no cover
for method in METHODS:
assert not hasattr(SimpleEstimator(), f"set_{method}_request")
class SimpleEstimator(BaseEstimator):
# This class should have every set_{method}_request
def fit(self, X, y, sample_weight=None):
pass # pragma: no cover
def fit_transform(self, X, y, sample_weight=None):
pass # pragma: no cover
def fit_predict(self, X, y, sample_weight=None):
pass # pragma: no cover
def partial_fit(self, X, y, sample_weight=None):
pass # pragma: no cover
def predict(self, X, sample_weight=None):
pass # pragma: no cover
def predict_proba(self, X, sample_weight=None):
pass # pragma: no cover
def predict_log_proba(self, X, sample_weight=None):
pass # pragma: no cover
def decision_function(self, X, sample_weight=None):
pass # pragma: no cover
def score(self, X, y, sample_weight=None):
pass # pragma: no cover
def split(self, X, y=None, sample_weight=None):
pass # pragma: no cover
def transform(self, X, sample_weight=None):
pass # pragma: no cover
def inverse_transform(self, X, sample_weight=None):
pass # pragma: no cover
# composite methods shouldn't have a corresponding set method.
for method in COMPOSITE_METHODS:
assert not hasattr(SimpleEstimator(), f"set_{method}_request")
# simple methods should have a corresponding set method.
for method in SIMPLE_METHODS:
assert hasattr(SimpleEstimator(), f"set_{method}_request")
def test_composite_methods():
# Test the behavior and the values of methods (composite methods) whose
# request values are a union of requests by other methods (simple methods).
# fit_transform and fit_predict are the only composite methods we have in
# scikit-learn.
class SimpleEstimator(BaseEstimator):
# This class should have every set_{method}_request
def fit(self, X, y, foo=None, bar=None):
pass # pragma: no cover
def predict(self, X, foo=None, bar=None):
pass # pragma: no cover
def transform(self, X, other_param=None):
pass # pragma: no cover
est = SimpleEstimator()
# Since no request is set for fit or predict or transform, the request for
# fit_transform and fit_predict should also be empty.
assert est.get_metadata_routing().fit_transform.requests == {
"bar": None,
"foo": None,
"other_param": None,
}
assert est.get_metadata_routing().fit_predict.requests == {"bar": None, "foo": None}
# setting the request on only one of them should raise an error
est.set_fit_request(foo=True, bar="test")
with pytest.raises(ValueError, match="Conflicting metadata requests for"):
est.get_metadata_routing().fit_predict
# setting the request on the other one should fail if not the same as the
# first method
est.set_predict_request(bar=True)
with pytest.raises(ValueError, match="Conflicting metadata requests for"):
est.get_metadata_routing().fit_predict
# now the requests are consistent and getting the requests for fit_predict
# shouldn't raise.
est.set_predict_request(foo=True, bar="test")
est.get_metadata_routing().fit_predict
# setting the request for a none-overlapping parameter would merge them
# together.
est.set_transform_request(other_param=True)
assert est.get_metadata_routing().fit_transform.requests == {
"bar": "test",
"foo": True,
"other_param": True,
}
def test_no_feature_flag_raises_error():
"""Test that when feature flag disabled, set_{method}_requests raises."""
with config_context(enable_metadata_routing=False):
with pytest.raises(RuntimeError, match="This method is only available"):
ConsumingClassifier().set_fit_request(sample_weight=True)
def test_none_metadata_passed():
"""Test that passing None as metadata when not requested doesn't raise"""
MetaRegressor(estimator=ConsumingRegressor()).fit(X, y, sample_weight=None)
def test_no_metadata_always_works():
"""Test that when no metadata is passed, having a meta-estimator which does
not yet support metadata routing works.
Non-regression test for https://github.com/scikit-learn/scikit-learn/issues/28246
"""
class Estimator(_RoutingNotSupportedMixin, BaseEstimator):
def fit(self, X, y, metadata=None):
return self
# This passes since no metadata is passed.
MetaRegressor(estimator=Estimator()).fit(X, y)
# This fails since metadata is passed but Estimator() does not support it.
with pytest.raises(
NotImplementedError, match="Estimator has not implemented metadata routing yet."
):
MetaRegressor(estimator=Estimator()).fit(X, y, metadata=my_groups)