ai-content-maker/.venv/Lib/site-packages/sklearn/tests/test_naive_bayes.py

974 lines
34 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import re
import warnings
import numpy as np
import pytest
from scipy.special import logsumexp
from sklearn.datasets import load_digits, load_iris
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.naive_bayes import (
BernoulliNB,
CategoricalNB,
ComplementNB,
GaussianNB,
MultinomialNB,
)
from sklearn.utils._testing import (
assert_allclose,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
)
from sklearn.utils.fixes import CSR_CONTAINERS
DISCRETE_NAIVE_BAYES_CLASSES = [BernoulliNB, CategoricalNB, ComplementNB, MultinomialNB]
ALL_NAIVE_BAYES_CLASSES = DISCRETE_NAIVE_BAYES_CLASSES + [GaussianNB]
msg = "The default value for `force_alpha` will change"
pytestmark = pytest.mark.filterwarnings(f"ignore:{msg}:FutureWarning")
# Data is just 6 separable points in the plane
X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]])
y = np.array([1, 1, 1, 2, 2, 2])
def get_random_normal_x_binary_y(global_random_seed):
# A bit more random tests
rng = np.random.RandomState(global_random_seed)
X1 = rng.normal(size=(10, 3))
y1 = (rng.normal(size=10) > 0).astype(int)
return X1, y1
def get_random_integer_x_three_classes_y(global_random_seed):
# Data is 6 random integer points in a 100 dimensional space classified to
# three classes.
rng = np.random.RandomState(global_random_seed)
X2 = rng.randint(5, size=(6, 100))
y2 = np.array([1, 1, 2, 2, 3, 3])
return X2, y2
def test_gnb():
# Gaussian Naive Bayes classification.
# This checks that GaussianNB implements fit and predict and returns
# correct values for a simple toy dataset.
clf = GaussianNB()
y_pred = clf.fit(X, y).predict(X)
assert_array_equal(y_pred, y)
y_pred_proba = clf.predict_proba(X)
y_pred_log_proba = clf.predict_log_proba(X)
assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8)
# Test whether label mismatch between target y and classes raises
# an Error
# FIXME Remove this test once the more general partial_fit tests are merged
with pytest.raises(
ValueError, match="The target label.* in y do not exist in the initial classes"
):
GaussianNB().partial_fit(X, y, classes=[0, 1])
def test_gnb_prior(global_random_seed):
# Test whether class priors are properly set.
clf = GaussianNB().fit(X, y)
assert_array_almost_equal(np.array([3, 3]) / 6.0, clf.class_prior_, 8)
X1, y1 = get_random_normal_x_binary_y(global_random_seed)
clf = GaussianNB().fit(X1, y1)
# Check that the class priors sum to 1
assert_array_almost_equal(clf.class_prior_.sum(), 1)
def test_gnb_sample_weight(global_random_seed):
"""Test whether sample weights are properly used in GNB."""
# Sample weights all being 1 should not change results
sw = np.ones(6)
clf = GaussianNB().fit(X, y)
clf_sw = GaussianNB().fit(X, y, sw)
assert_array_almost_equal(clf.theta_, clf_sw.theta_)
assert_array_almost_equal(clf.var_, clf_sw.var_)
# Fitting twice with half sample-weights should result
# in same result as fitting once with full weights
rng = np.random.RandomState(global_random_seed)
sw = rng.rand(y.shape[0])
clf1 = GaussianNB().fit(X, y, sample_weight=sw)
clf2 = GaussianNB().partial_fit(X, y, classes=[1, 2], sample_weight=sw / 2)
clf2.partial_fit(X, y, sample_weight=sw / 2)
assert_array_almost_equal(clf1.theta_, clf2.theta_)
assert_array_almost_equal(clf1.var_, clf2.var_)
# Check that duplicate entries and correspondingly increased sample
# weights yield the same result
ind = rng.randint(0, X.shape[0], 20)
sample_weight = np.bincount(ind, minlength=X.shape[0])
clf_dupl = GaussianNB().fit(X[ind], y[ind])
clf_sw = GaussianNB().fit(X, y, sample_weight)
assert_array_almost_equal(clf_dupl.theta_, clf_sw.theta_)
assert_array_almost_equal(clf_dupl.var_, clf_sw.var_)
# non-regression test for gh-24140 where a division by zero was
# occurring when a single class was present
sample_weight = (y == 1).astype(np.float64)
clf = GaussianNB().fit(X, y, sample_weight=sample_weight)
def test_gnb_neg_priors():
"""Test whether an error is raised in case of negative priors"""
clf = GaussianNB(priors=np.array([-1.0, 2.0]))
msg = "Priors must be non-negative"
with pytest.raises(ValueError, match=msg):
clf.fit(X, y)
def test_gnb_priors():
"""Test whether the class prior override is properly used"""
clf = GaussianNB(priors=np.array([0.3, 0.7])).fit(X, y)
assert_array_almost_equal(
clf.predict_proba([[-0.1, -0.1]]),
np.array([[0.825303662161683, 0.174696337838317]]),
8,
)
assert_array_almost_equal(clf.class_prior_, np.array([0.3, 0.7]))
def test_gnb_priors_sum_isclose():
# test whether the class prior sum is properly tested"""
X = np.array(
[
[-1, -1],
[-2, -1],
[-3, -2],
[-4, -5],
[-5, -4],
[1, 1],
[2, 1],
[3, 2],
[4, 4],
[5, 5],
]
)
priors = np.array([0.08, 0.14, 0.03, 0.16, 0.11, 0.16, 0.07, 0.14, 0.11, 0.0])
Y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
clf = GaussianNB(priors=priors)
# smoke test for issue #9633
clf.fit(X, Y)
def test_gnb_wrong_nb_priors():
"""Test whether an error is raised if the number of prior is different
from the number of class"""
clf = GaussianNB(priors=np.array([0.25, 0.25, 0.25, 0.25]))
msg = "Number of priors must match number of classes"
with pytest.raises(ValueError, match=msg):
clf.fit(X, y)
def test_gnb_prior_greater_one():
"""Test if an error is raised if the sum of prior greater than one"""
clf = GaussianNB(priors=np.array([2.0, 1.0]))
msg = "The sum of the priors should be 1"
with pytest.raises(ValueError, match=msg):
clf.fit(X, y)
def test_gnb_prior_large_bias():
"""Test if good prediction when class prior favor largely one class"""
clf = GaussianNB(priors=np.array([0.01, 0.99]))
clf.fit(X, y)
assert clf.predict([[-0.1, -0.1]]) == np.array([2])
def test_gnb_check_update_with_no_data():
"""Test when the partial fit is called without any data"""
# Create an empty array
prev_points = 100
mean = 0.0
var = 1.0
x_empty = np.empty((0, X.shape[1]))
tmean, tvar = GaussianNB._update_mean_variance(prev_points, mean, var, x_empty)
assert tmean == mean
assert tvar == var
def test_gnb_partial_fit():
clf = GaussianNB().fit(X, y)
clf_pf = GaussianNB().partial_fit(X, y, np.unique(y))
assert_array_almost_equal(clf.theta_, clf_pf.theta_)
assert_array_almost_equal(clf.var_, clf_pf.var_)
assert_array_almost_equal(clf.class_prior_, clf_pf.class_prior_)
clf_pf2 = GaussianNB().partial_fit(X[0::2, :], y[0::2], np.unique(y))
clf_pf2.partial_fit(X[1::2], y[1::2])
assert_array_almost_equal(clf.theta_, clf_pf2.theta_)
assert_array_almost_equal(clf.var_, clf_pf2.var_)
assert_array_almost_equal(clf.class_prior_, clf_pf2.class_prior_)
def test_gnb_naive_bayes_scale_invariance():
# Scaling the data should not change the prediction results
iris = load_iris()
X, y = iris.data, iris.target
labels = [GaussianNB().fit(f * X, y).predict(f * X) for f in [1e-10, 1, 1e10]]
assert_array_equal(labels[0], labels[1])
assert_array_equal(labels[1], labels[2])
@pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES)
def test_discretenb_prior(DiscreteNaiveBayes, global_random_seed):
# Test whether class priors are properly set.
X2, y2 = get_random_integer_x_three_classes_y(global_random_seed)
clf = DiscreteNaiveBayes().fit(X2, y2)
assert_array_almost_equal(
np.log(np.array([2, 2, 2]) / 6.0), clf.class_log_prior_, 8
)
@pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES)
def test_discretenb_partial_fit(DiscreteNaiveBayes):
clf1 = DiscreteNaiveBayes()
clf1.fit([[0, 1], [1, 0], [1, 1]], [0, 1, 1])
clf2 = DiscreteNaiveBayes()
clf2.partial_fit([[0, 1], [1, 0], [1, 1]], [0, 1, 1], classes=[0, 1])
assert_array_equal(clf1.class_count_, clf2.class_count_)
if DiscreteNaiveBayes is CategoricalNB:
for i in range(len(clf1.category_count_)):
assert_array_equal(clf1.category_count_[i], clf2.category_count_[i])
else:
assert_array_equal(clf1.feature_count_, clf2.feature_count_)
clf3 = DiscreteNaiveBayes()
# all categories have to appear in the first partial fit
clf3.partial_fit([[0, 1]], [0], classes=[0, 1])
clf3.partial_fit([[1, 0]], [1])
clf3.partial_fit([[1, 1]], [1])
assert_array_equal(clf1.class_count_, clf3.class_count_)
if DiscreteNaiveBayes is CategoricalNB:
# the categories for each feature of CategoricalNB are mapped to an
# index chronologically with each call of partial fit and therefore
# the category_count matrices cannot be compared for equality
for i in range(len(clf1.category_count_)):
assert_array_equal(
clf1.category_count_[i].shape, clf3.category_count_[i].shape
)
assert_array_equal(
np.sum(clf1.category_count_[i], axis=1),
np.sum(clf3.category_count_[i], axis=1),
)
# assert category 0 occurs 1x in the first class and 0x in the 2nd
# class
assert_array_equal(clf1.category_count_[0][0], np.array([1, 0]))
# assert category 1 occurs 0x in the first class and 2x in the 2nd
# class
assert_array_equal(clf1.category_count_[0][1], np.array([0, 2]))
# assert category 0 occurs 0x in the first class and 1x in the 2nd
# class
assert_array_equal(clf1.category_count_[1][0], np.array([0, 1]))
# assert category 1 occurs 1x in the first class and 1x in the 2nd
# class
assert_array_equal(clf1.category_count_[1][1], np.array([1, 1]))
else:
assert_array_equal(clf1.feature_count_, clf3.feature_count_)
@pytest.mark.parametrize("NaiveBayes", ALL_NAIVE_BAYES_CLASSES)
def test_NB_partial_fit_no_first_classes(NaiveBayes, global_random_seed):
# classes is required for first call to partial fit
X2, y2 = get_random_integer_x_three_classes_y(global_random_seed)
with pytest.raises(
ValueError, match="classes must be passed on the first call to partial_fit."
):
NaiveBayes().partial_fit(X2, y2)
# check consistency of consecutive classes values
clf = NaiveBayes()
clf.partial_fit(X2, y2, classes=np.unique(y2))
with pytest.raises(
ValueError, match="is not the same as on last call to partial_fit"
):
clf.partial_fit(X2, y2, classes=np.arange(42))
def test_discretenb_predict_proba():
# Test discrete NB classes' probability scores
# The 100s below distinguish Bernoulli from multinomial.
# FIXME: write a test to show this.
X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]]
X_multinomial = [[0, 1], [1, 3], [4, 0]]
# test binary case (1-d output)
y = [0, 0, 2] # 2 is regression test for binary case, 02e673
for DiscreteNaiveBayes, X in zip(
[BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]
):
clf = DiscreteNaiveBayes().fit(X, y)
assert clf.predict(X[-1:]) == 2
assert clf.predict_proba([X[0]]).shape == (1, 2)
assert_array_almost_equal(
clf.predict_proba(X[:2]).sum(axis=1), np.array([1.0, 1.0]), 6
)
# test multiclass case (2-d output, must sum to one)
y = [0, 1, 2]
for DiscreteNaiveBayes, X in zip(
[BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]
):
clf = DiscreteNaiveBayes().fit(X, y)
assert clf.predict_proba(X[0:1]).shape == (1, 3)
assert clf.predict_proba(X[:2]).shape == (2, 3)
assert_almost_equal(np.sum(clf.predict_proba([X[1]])), 1)
assert_almost_equal(np.sum(clf.predict_proba([X[-1]])), 1)
assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1)
@pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES)
def test_discretenb_uniform_prior(DiscreteNaiveBayes):
# Test whether discrete NB classes fit a uniform prior
# when fit_prior=False and class_prior=None
clf = DiscreteNaiveBayes()
clf.set_params(fit_prior=False)
clf.fit([[0], [0], [1]], [0, 0, 1])
prior = np.exp(clf.class_log_prior_)
assert_array_almost_equal(prior, np.array([0.5, 0.5]))
@pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES)
def test_discretenb_provide_prior(DiscreteNaiveBayes):
# Test whether discrete NB classes use provided prior
clf = DiscreteNaiveBayes(class_prior=[0.5, 0.5])
clf.fit([[0], [0], [1]], [0, 0, 1])
prior = np.exp(clf.class_log_prior_)
assert_array_almost_equal(prior, np.array([0.5, 0.5]))
# Inconsistent number of classes with prior
msg = "Number of priors must match number of classes"
with pytest.raises(ValueError, match=msg):
clf.fit([[0], [1], [2]], [0, 1, 2])
msg = "is not the same as on last call to partial_fit"
with pytest.raises(ValueError, match=msg):
clf.partial_fit([[0], [1]], [0, 1], classes=[0, 1, 1])
@pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES)
def test_discretenb_provide_prior_with_partial_fit(DiscreteNaiveBayes):
# Test whether discrete NB classes use provided prior
# when using partial_fit
iris = load_iris()
iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split(
iris.data, iris.target, test_size=0.4, random_state=415
)
for prior in [None, [0.3, 0.3, 0.4]]:
clf_full = DiscreteNaiveBayes(class_prior=prior)
clf_full.fit(iris.data, iris.target)
clf_partial = DiscreteNaiveBayes(class_prior=prior)
clf_partial.partial_fit(iris_data1, iris_target1, classes=[0, 1, 2])
clf_partial.partial_fit(iris_data2, iris_target2)
assert_array_almost_equal(
clf_full.class_log_prior_, clf_partial.class_log_prior_
)
@pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES)
def test_discretenb_sample_weight_multiclass(DiscreteNaiveBayes):
# check shape consistency for number of samples at fit time
X = [
[0, 0, 1],
[0, 1, 1],
[0, 1, 1],
[1, 0, 0],
]
y = [0, 0, 1, 2]
sample_weight = np.array([1, 1, 2, 2], dtype=np.float64)
sample_weight /= sample_weight.sum()
clf = DiscreteNaiveBayes().fit(X, y, sample_weight=sample_weight)
assert_array_equal(clf.predict(X), [0, 1, 1, 2])
# Check sample weight using the partial_fit method
clf = DiscreteNaiveBayes()
clf.partial_fit(X[:2], y[:2], classes=[0, 1, 2], sample_weight=sample_weight[:2])
clf.partial_fit(X[2:3], y[2:3], sample_weight=sample_weight[2:3])
clf.partial_fit(X[3:], y[3:], sample_weight=sample_weight[3:])
assert_array_equal(clf.predict(X), [0, 1, 1, 2])
@pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES)
@pytest.mark.parametrize("use_partial_fit", [False, True])
@pytest.mark.parametrize("train_on_single_class_y", [False, True])
def test_discretenb_degenerate_one_class_case(
DiscreteNaiveBayes,
use_partial_fit,
train_on_single_class_y,
):
# Most array attributes of a discrete naive Bayes classifier should have a
# first-axis length equal to the number of classes. Exceptions include:
# ComplementNB.feature_all_, CategoricalNB.n_categories_.
# Confirm that this is the case for binary problems and the degenerate
# case of a single class in the training set, when fitting with `fit` or
# `partial_fit`.
# Non-regression test for handling degenerate one-class case:
# https://github.com/scikit-learn/scikit-learn/issues/18974
X = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
y = [1, 1, 2]
if train_on_single_class_y:
X = X[:-1]
y = y[:-1]
classes = sorted(list(set(y)))
num_classes = len(classes)
clf = DiscreteNaiveBayes()
if use_partial_fit:
clf.partial_fit(X, y, classes=classes)
else:
clf.fit(X, y)
assert clf.predict(X[:1]) == y[0]
# Check that attributes have expected first-axis lengths
attribute_names = [
"classes_",
"class_count_",
"class_log_prior_",
"feature_count_",
"feature_log_prob_",
]
for attribute_name in attribute_names:
attribute = getattr(clf, attribute_name, None)
if attribute is None:
# CategoricalNB has no feature_count_ attribute
continue
if isinstance(attribute, np.ndarray):
assert attribute.shape[0] == num_classes
else:
# CategoricalNB.feature_log_prob_ is a list of arrays
for element in attribute:
assert element.shape[0] == num_classes
@pytest.mark.parametrize("kind", ("dense", "sparse"))
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_mnnb(kind, global_random_seed, csr_container):
# Test Multinomial Naive Bayes classification.
# This checks that MultinomialNB implements fit and predict and returns
# correct values for a simple toy dataset.
X2, y2 = get_random_integer_x_three_classes_y(global_random_seed)
if kind == "dense":
X = X2
elif kind == "sparse":
X = csr_container(X2)
# Check the ability to predict the learning set.
clf = MultinomialNB()
msg = "Negative values in data passed to"
with pytest.raises(ValueError, match=msg):
clf.fit(-X, y2)
y_pred = clf.fit(X, y2).predict(X)
assert_array_equal(y_pred, y2)
# Verify that np.log(clf.predict_proba(X)) gives the same results as
# clf.predict_log_proba(X)
y_pred_proba = clf.predict_proba(X)
y_pred_log_proba = clf.predict_log_proba(X)
assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8)
# Check that incremental fitting yields the same results
clf2 = MultinomialNB()
clf2.partial_fit(X[:2], y2[:2], classes=np.unique(y2))
clf2.partial_fit(X[2:5], y2[2:5])
clf2.partial_fit(X[5:], y2[5:])
y_pred2 = clf2.predict(X)
assert_array_equal(y_pred2, y2)
y_pred_proba2 = clf2.predict_proba(X)
y_pred_log_proba2 = clf2.predict_log_proba(X)
assert_array_almost_equal(np.log(y_pred_proba2), y_pred_log_proba2, 8)
assert_array_almost_equal(y_pred_proba2, y_pred_proba)
assert_array_almost_equal(y_pred_log_proba2, y_pred_log_proba)
# Partial fit on the whole data at once should be the same as fit too
clf3 = MultinomialNB()
clf3.partial_fit(X, y2, classes=np.unique(y2))
y_pred3 = clf3.predict(X)
assert_array_equal(y_pred3, y2)
y_pred_proba3 = clf3.predict_proba(X)
y_pred_log_proba3 = clf3.predict_log_proba(X)
assert_array_almost_equal(np.log(y_pred_proba3), y_pred_log_proba3, 8)
assert_array_almost_equal(y_pred_proba3, y_pred_proba)
assert_array_almost_equal(y_pred_log_proba3, y_pred_log_proba)
def test_mnb_prior_unobserved_targets():
# test smoothing of prior for yet unobserved targets
# Create toy training data
X = np.array([[0, 1], [1, 0]])
y = np.array([0, 1])
clf = MultinomialNB()
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
clf.partial_fit(X, y, classes=[0, 1, 2])
assert clf.predict([[0, 1]]) == 0
assert clf.predict([[1, 0]]) == 1
assert clf.predict([[1, 1]]) == 0
# add a training example with previously unobserved class
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
clf.partial_fit([[1, 1]], [2])
assert clf.predict([[0, 1]]) == 0
assert clf.predict([[1, 0]]) == 1
assert clf.predict([[1, 1]]) == 2
def test_bnb():
# Tests that BernoulliNB when alpha=1.0 gives the same values as
# those given for the toy example in Manning, Raghavan, and
# Schuetze's "Introduction to Information Retrieval" book:
# https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html
# Training data points are:
# Chinese Beijing Chinese (class: China)
# Chinese Chinese Shanghai (class: China)
# Chinese Macao (class: China)
# Tokyo Japan Chinese (class: Japan)
# Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo
X = np.array(
[[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]]
)
# Classes are China (0), Japan (1)
Y = np.array([0, 0, 0, 1])
# Fit BernoulliBN w/ alpha = 1.0
clf = BernoulliNB(alpha=1.0)
clf.fit(X, Y)
# Check the class prior is correct
class_prior = np.array([0.75, 0.25])
assert_array_almost_equal(np.exp(clf.class_log_prior_), class_prior)
# Check the feature probabilities are correct
feature_prob = np.array(
[
[0.4, 0.8, 0.2, 0.4, 0.4, 0.2],
[1 / 3.0, 2 / 3.0, 2 / 3.0, 1 / 3.0, 1 / 3.0, 2 / 3.0],
]
)
assert_array_almost_equal(np.exp(clf.feature_log_prob_), feature_prob)
# Testing data point is:
# Chinese Chinese Chinese Tokyo Japan
X_test = np.array([[0, 1, 1, 0, 0, 1]])
# Check the predictive probabilities are correct
unnorm_predict_proba = np.array([[0.005183999999999999, 0.02194787379972565]])
predict_proba = unnorm_predict_proba / np.sum(unnorm_predict_proba)
assert_array_almost_equal(clf.predict_proba(X_test), predict_proba)
def test_bnb_feature_log_prob():
# Test for issue #4268.
# Tests that the feature log prob value computed by BernoulliNB when
# alpha=1.0 is equal to the expression given in Manning, Raghavan,
# and Schuetze's "Introduction to Information Retrieval" book:
# http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html
X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]])
Y = np.array([0, 0, 1, 2, 2])
# Fit Bernoulli NB w/ alpha = 1.0
clf = BernoulliNB(alpha=1.0)
clf.fit(X, Y)
# Manually form the (log) numerator and denominator that
# constitute P(feature presence | class)
num = np.log(clf.feature_count_ + 1.0)
denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T
# Check manual estimate matches
assert_array_almost_equal(clf.feature_log_prob_, (num - denom))
def test_cnb():
# Tests ComplementNB when alpha=1.0 for the toy example in Manning,
# Raghavan, and Schuetze's "Introduction to Information Retrieval" book:
# https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html
# Training data points are:
# Chinese Beijing Chinese (class: China)
# Chinese Chinese Shanghai (class: China)
# Chinese Macao (class: China)
# Tokyo Japan Chinese (class: Japan)
# Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo.
X = np.array(
[[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]]
)
# Classes are China (0), Japan (1).
Y = np.array([0, 0, 0, 1])
# Check that weights are correct. See steps 4-6 in Table 4 of
# Rennie et al. (2003).
theta = np.array(
[
[
(0 + 1) / (3 + 6),
(1 + 1) / (3 + 6),
(1 + 1) / (3 + 6),
(0 + 1) / (3 + 6),
(0 + 1) / (3 + 6),
(1 + 1) / (3 + 6),
],
[
(1 + 1) / (6 + 6),
(3 + 1) / (6 + 6),
(0 + 1) / (6 + 6),
(1 + 1) / (6 + 6),
(1 + 1) / (6 + 6),
(0 + 1) / (6 + 6),
],
]
)
weights = np.zeros(theta.shape)
normed_weights = np.zeros(theta.shape)
for i in range(2):
weights[i] = -np.log(theta[i])
normed_weights[i] = weights[i] / weights[i].sum()
# Verify inputs are nonnegative.
clf = ComplementNB(alpha=1.0)
msg = re.escape("Negative values in data passed to ComplementNB (input X)")
with pytest.raises(ValueError, match=msg):
clf.fit(-X, Y)
clf.fit(X, Y)
# Check that counts/weights are correct.
feature_count = np.array([[1, 3, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1]])
assert_array_equal(clf.feature_count_, feature_count)
class_count = np.array([3, 1])
assert_array_equal(clf.class_count_, class_count)
feature_all = np.array([1, 4, 1, 1, 1, 1])
assert_array_equal(clf.feature_all_, feature_all)
assert_array_almost_equal(clf.feature_log_prob_, weights)
clf = ComplementNB(alpha=1.0, norm=True)
clf.fit(X, Y)
assert_array_almost_equal(clf.feature_log_prob_, normed_weights)
def test_categoricalnb(global_random_seed):
# Check the ability to predict the training set.
clf = CategoricalNB()
X2, y2 = get_random_integer_x_three_classes_y(global_random_seed)
y_pred = clf.fit(X2, y2).predict(X2)
assert_array_equal(y_pred, y2)
X3 = np.array([[1, 4], [2, 5]])
y3 = np.array([1, 2])
clf = CategoricalNB(alpha=1, fit_prior=False)
clf.fit(X3, y3)
assert_array_equal(clf.n_categories_, np.array([3, 6]))
# Check error is raised for X with negative entries
X = np.array([[0, -1]])
y = np.array([1])
error_msg = re.escape("Negative values in data passed to CategoricalNB (input X)")
with pytest.raises(ValueError, match=error_msg):
clf.predict(X)
with pytest.raises(ValueError, match=error_msg):
clf.fit(X, y)
# Test alpha
X3_test = np.array([[2, 5]])
# alpha=1 increases the count of all categories by one so the final
# probability for each category is not 50/50 but 1/3 to 2/3
bayes_numerator = np.array([[1 / 3 * 1 / 3, 2 / 3 * 2 / 3]])
bayes_denominator = bayes_numerator.sum()
assert_array_almost_equal(
clf.predict_proba(X3_test), bayes_numerator / bayes_denominator
)
# Assert category_count has counted all features
assert len(clf.category_count_) == X3.shape[1]
# Check sample_weight
X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]])
y = np.array([1, 1, 2, 2])
clf = CategoricalNB(alpha=1, fit_prior=False)
clf.fit(X, y)
assert_array_equal(clf.predict(np.array([[0, 0]])), np.array([1]))
assert_array_equal(clf.n_categories_, np.array([2, 2]))
for factor in [1.0, 0.3, 5, 0.0001]:
X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]])
y = np.array([1, 1, 2, 2])
sample_weight = np.array([1, 1, 10, 0.1]) * factor
clf = CategoricalNB(alpha=1, fit_prior=False)
clf.fit(X, y, sample_weight=sample_weight)
assert_array_equal(clf.predict(np.array([[0, 0]])), np.array([2]))
assert_array_equal(clf.n_categories_, np.array([2, 2]))
@pytest.mark.parametrize(
"min_categories, exp_X1_count, exp_X2_count, new_X, exp_n_categories_",
[
# check min_categories with int > observed categories
(
3,
np.array([[2, 0, 0], [1, 1, 0]]),
np.array([[1, 1, 0], [1, 1, 0]]),
np.array([[0, 2]]),
np.array([3, 3]),
),
# check with list input
(
[3, 4],
np.array([[2, 0, 0], [1, 1, 0]]),
np.array([[1, 1, 0, 0], [1, 1, 0, 0]]),
np.array([[0, 3]]),
np.array([3, 4]),
),
# check min_categories with min less than actual
(
[
1,
np.array([[2, 0], [1, 1]]),
np.array([[1, 1], [1, 1]]),
np.array([[0, 1]]),
np.array([2, 2]),
]
),
],
)
def test_categoricalnb_with_min_categories(
min_categories, exp_X1_count, exp_X2_count, new_X, exp_n_categories_
):
X_n_categories = np.array([[0, 0], [0, 1], [0, 0], [1, 1]])
y_n_categories = np.array([1, 1, 2, 2])
expected_prediction = np.array([1])
clf = CategoricalNB(alpha=1, fit_prior=False, min_categories=min_categories)
clf.fit(X_n_categories, y_n_categories)
X1_count, X2_count = clf.category_count_
assert_array_equal(X1_count, exp_X1_count)
assert_array_equal(X2_count, exp_X2_count)
predictions = clf.predict(new_X)
assert_array_equal(predictions, expected_prediction)
assert_array_equal(clf.n_categories_, exp_n_categories_)
@pytest.mark.parametrize(
"min_categories, error_msg",
[
([[3, 2], [2, 4]], "'min_categories' should have shape"),
],
)
def test_categoricalnb_min_categories_errors(min_categories, error_msg):
X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]])
y = np.array([1, 1, 2, 2])
clf = CategoricalNB(alpha=1, fit_prior=False, min_categories=min_categories)
with pytest.raises(ValueError, match=error_msg):
clf.fit(X, y)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_alpha(csr_container):
# Setting alpha=0 should not output nan results when p(x_i|y_j)=0 is a case
X = np.array([[1, 0], [1, 1]])
y = np.array([0, 1])
nb = BernoulliNB(alpha=0.0, force_alpha=False)
msg = "alpha too small will result in numeric errors, setting alpha = 1.0e-10"
with pytest.warns(UserWarning, match=msg):
nb.partial_fit(X, y, classes=[0, 1])
with pytest.warns(UserWarning, match=msg):
nb.fit(X, y)
prob = np.array([[1, 0], [0, 1]])
assert_array_almost_equal(nb.predict_proba(X), prob)
nb = MultinomialNB(alpha=0.0, force_alpha=False)
with pytest.warns(UserWarning, match=msg):
nb.partial_fit(X, y, classes=[0, 1])
with pytest.warns(UserWarning, match=msg):
nb.fit(X, y)
prob = np.array([[2.0 / 3, 1.0 / 3], [0, 1]])
assert_array_almost_equal(nb.predict_proba(X), prob)
nb = CategoricalNB(alpha=0.0, force_alpha=False)
with pytest.warns(UserWarning, match=msg):
nb.fit(X, y)
prob = np.array([[1.0, 0.0], [0.0, 1.0]])
assert_array_almost_equal(nb.predict_proba(X), prob)
# Test sparse X
X = csr_container(X)
nb = BernoulliNB(alpha=0.0, force_alpha=False)
with pytest.warns(UserWarning, match=msg):
nb.fit(X, y)
prob = np.array([[1, 0], [0, 1]])
assert_array_almost_equal(nb.predict_proba(X), prob)
nb = MultinomialNB(alpha=0.0, force_alpha=False)
with pytest.warns(UserWarning, match=msg):
nb.fit(X, y)
prob = np.array([[2.0 / 3, 1.0 / 3], [0, 1]])
assert_array_almost_equal(nb.predict_proba(X), prob)
def test_alpha_vector():
X = np.array([[1, 0], [1, 1]])
y = np.array([0, 1])
# Setting alpha=np.array with same length
# as number of features should be fine
alpha = np.array([1, 2])
nb = MultinomialNB(alpha=alpha, force_alpha=False)
nb.partial_fit(X, y, classes=[0, 1])
# Test feature probabilities uses pseudo-counts (alpha)
feature_prob = np.array([[1 / 2, 1 / 2], [2 / 5, 3 / 5]])
assert_array_almost_equal(nb.feature_log_prob_, np.log(feature_prob))
# Test predictions
prob = np.array([[5 / 9, 4 / 9], [25 / 49, 24 / 49]])
assert_array_almost_equal(nb.predict_proba(X), prob)
# Test alpha non-negative
alpha = np.array([1.0, -0.1])
m_nb = MultinomialNB(alpha=alpha, force_alpha=False)
expected_msg = "All values in alpha must be greater than 0."
with pytest.raises(ValueError, match=expected_msg):
m_nb.fit(X, y)
# Test that too small pseudo-counts are replaced
ALPHA_MIN = 1e-10
alpha = np.array([ALPHA_MIN / 2, 0.5])
m_nb = MultinomialNB(alpha=alpha, force_alpha=False)
m_nb.partial_fit(X, y, classes=[0, 1])
assert_array_almost_equal(m_nb._check_alpha(), [ALPHA_MIN, 0.5], decimal=12)
# Test correct dimensions
alpha = np.array([1.0, 2.0, 3.0])
m_nb = MultinomialNB(alpha=alpha, force_alpha=False)
expected_msg = "When alpha is an array, it should contains `n_features`"
with pytest.raises(ValueError, match=expected_msg):
m_nb.fit(X, y)
def test_check_accuracy_on_digits():
# Non regression test to make sure that any further refactoring / optim
# of the NB models do not harm the performance on a slightly non-linearly
# separable dataset
X, y = load_digits(return_X_y=True)
binary_3v8 = np.logical_or(y == 3, y == 8)
X_3v8, y_3v8 = X[binary_3v8], y[binary_3v8]
# Multinomial NB
scores = cross_val_score(MultinomialNB(alpha=10), X, y, cv=10)
assert scores.mean() > 0.86
scores = cross_val_score(MultinomialNB(alpha=10), X_3v8, y_3v8, cv=10)
assert scores.mean() > 0.94
# Bernoulli NB
scores = cross_val_score(BernoulliNB(alpha=10), X > 4, y, cv=10)
assert scores.mean() > 0.83
scores = cross_val_score(BernoulliNB(alpha=10), X_3v8 > 4, y_3v8, cv=10)
assert scores.mean() > 0.92
# Gaussian NB
scores = cross_val_score(GaussianNB(), X, y, cv=10)
assert scores.mean() > 0.77
scores = cross_val_score(GaussianNB(var_smoothing=0.1), X, y, cv=10)
assert scores.mean() > 0.89
scores = cross_val_score(GaussianNB(), X_3v8, y_3v8, cv=10)
assert scores.mean() > 0.86
def test_check_alpha():
"""The provided value for alpha must only be
used if alpha < _ALPHA_MIN and force_alpha is True.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/10772
"""
_ALPHA_MIN = 1e-10
b = BernoulliNB(alpha=0, force_alpha=True)
assert b._check_alpha() == 0
alphas = np.array([0.0, 1.0])
b = BernoulliNB(alpha=alphas, force_alpha=True)
# We manually set `n_features_in_` not to have `_check_alpha` err
b.n_features_in_ = alphas.shape[0]
assert_array_equal(b._check_alpha(), alphas)
msg = (
"alpha too small will result in numeric errors, setting alpha = %.1e"
% _ALPHA_MIN
)
b = BernoulliNB(alpha=0, force_alpha=False)
with pytest.warns(UserWarning, match=msg):
assert b._check_alpha() == _ALPHA_MIN
b = BernoulliNB(alpha=0, force_alpha=False)
with pytest.warns(UserWarning, match=msg):
assert b._check_alpha() == _ALPHA_MIN
b = BernoulliNB(alpha=alphas, force_alpha=False)
# We manually set `n_features_in_` not to have `_check_alpha` err
b.n_features_in_ = alphas.shape[0]
with pytest.warns(UserWarning, match=msg):
assert_array_equal(b._check_alpha(), np.array([_ALPHA_MIN, 1.0]))
@pytest.mark.parametrize("Estimator", ALL_NAIVE_BAYES_CLASSES)
def test_predict_joint_proba(Estimator, global_random_seed):
X2, y2 = get_random_integer_x_three_classes_y(global_random_seed)
est = Estimator().fit(X2, y2)
jll = est.predict_joint_log_proba(X2)
log_prob_x = logsumexp(jll, axis=1)
log_prob_x_y = jll - np.atleast_2d(log_prob_x).T
assert_allclose(est.predict_log_proba(X2), log_prob_x_y)