211 lines
5.9 KiB
Python
211 lines
5.9 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
from numpy.testing import assert_allclose, assert_array_equal
|
||
|
from scipy import sparse
|
||
|
|
||
|
from sklearn.datasets import load_iris
|
||
|
from sklearn.utils import _safe_indexing, check_array
|
||
|
from sklearn.utils._mocking import (
|
||
|
CheckingClassifier,
|
||
|
_MockEstimatorOnOffPrediction,
|
||
|
)
|
||
|
from sklearn.utils._testing import _convert_container
|
||
|
from sklearn.utils.fixes import CSR_CONTAINERS
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def iris():
|
||
|
return load_iris(return_X_y=True)
|
||
|
|
||
|
|
||
|
def _success(x):
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _fail(x):
|
||
|
return False
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"kwargs",
|
||
|
[
|
||
|
{},
|
||
|
{"check_X": _success},
|
||
|
{"check_y": _success},
|
||
|
{"check_X": _success, "check_y": _success},
|
||
|
],
|
||
|
)
|
||
|
def test_check_on_fit_success(iris, kwargs):
|
||
|
X, y = iris
|
||
|
CheckingClassifier(**kwargs).fit(X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"kwargs",
|
||
|
[
|
||
|
{"check_X": _fail},
|
||
|
{"check_y": _fail},
|
||
|
{"check_X": _success, "check_y": _fail},
|
||
|
{"check_X": _fail, "check_y": _success},
|
||
|
{"check_X": _fail, "check_y": _fail},
|
||
|
],
|
||
|
)
|
||
|
def test_check_on_fit_fail(iris, kwargs):
|
||
|
X, y = iris
|
||
|
clf = CheckingClassifier(**kwargs)
|
||
|
with pytest.raises(AssertionError):
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"pred_func", ["predict", "predict_proba", "decision_function", "score"]
|
||
|
)
|
||
|
def test_check_X_on_predict_success(iris, pred_func):
|
||
|
X, y = iris
|
||
|
clf = CheckingClassifier(check_X=_success).fit(X, y)
|
||
|
getattr(clf, pred_func)(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"pred_func", ["predict", "predict_proba", "decision_function", "score"]
|
||
|
)
|
||
|
def test_check_X_on_predict_fail(iris, pred_func):
|
||
|
X, y = iris
|
||
|
clf = CheckingClassifier(check_X=_success).fit(X, y)
|
||
|
clf.set_params(check_X=_fail)
|
||
|
with pytest.raises(AssertionError):
|
||
|
getattr(clf, pred_func)(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("input_type", ["list", "array", "sparse", "dataframe"])
|
||
|
def test_checking_classifier(iris, input_type):
|
||
|
# Check that the CheckingClassifier outputs what we expect
|
||
|
X, y = iris
|
||
|
X = _convert_container(X, input_type)
|
||
|
clf = CheckingClassifier()
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
assert_array_equal(clf.classes_, np.unique(y))
|
||
|
assert len(clf.classes_) == 3
|
||
|
assert clf.n_features_in_ == 4
|
||
|
|
||
|
y_pred = clf.predict(X)
|
||
|
assert_array_equal(y_pred, np.zeros(y_pred.size, dtype=int))
|
||
|
|
||
|
assert clf.score(X) == pytest.approx(0)
|
||
|
clf.set_params(foo_param=10)
|
||
|
assert clf.fit(X, y).score(X) == pytest.approx(1)
|
||
|
|
||
|
y_proba = clf.predict_proba(X)
|
||
|
assert y_proba.shape == (150, 3)
|
||
|
assert_allclose(y_proba[:, 0], 1)
|
||
|
assert_allclose(y_proba[:, 1:], 0)
|
||
|
|
||
|
y_decision = clf.decision_function(X)
|
||
|
assert y_decision.shape == (150, 3)
|
||
|
assert_allclose(y_decision[:, 0], 1)
|
||
|
assert_allclose(y_decision[:, 1:], 0)
|
||
|
|
||
|
# check the shape in case of binary classification
|
||
|
first_2_classes = np.logical_or(y == 0, y == 1)
|
||
|
X = _safe_indexing(X, first_2_classes)
|
||
|
y = _safe_indexing(y, first_2_classes)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
y_proba = clf.predict_proba(X)
|
||
|
assert y_proba.shape == (100, 2)
|
||
|
assert_allclose(y_proba[:, 0], 1)
|
||
|
assert_allclose(y_proba[:, 1], 0)
|
||
|
|
||
|
y_decision = clf.decision_function(X)
|
||
|
assert y_decision.shape == (100,)
|
||
|
assert_allclose(y_decision, 0)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
||
|
def test_checking_classifier_with_params(iris, csr_container):
|
||
|
X, y = iris
|
||
|
X_sparse = csr_container(X)
|
||
|
|
||
|
clf = CheckingClassifier(check_X=sparse.issparse)
|
||
|
with pytest.raises(AssertionError):
|
||
|
clf.fit(X, y)
|
||
|
clf.fit(X_sparse, y)
|
||
|
|
||
|
clf = CheckingClassifier(
|
||
|
check_X=check_array, check_X_params={"accept_sparse": False}
|
||
|
)
|
||
|
clf.fit(X, y)
|
||
|
with pytest.raises(TypeError, match="Sparse data was passed"):
|
||
|
clf.fit(X_sparse, y)
|
||
|
|
||
|
|
||
|
def test_checking_classifier_fit_params(iris):
|
||
|
# check the error raised when the number of samples is not the one expected
|
||
|
X, y = iris
|
||
|
clf = CheckingClassifier(expected_sample_weight=True)
|
||
|
sample_weight = np.ones(len(X) // 2)
|
||
|
|
||
|
msg = f"sample_weight.shape == ({len(X) // 2},), expected ({len(X)},)!"
|
||
|
with pytest.raises(ValueError) as exc:
|
||
|
clf.fit(X, y, sample_weight=sample_weight)
|
||
|
assert exc.value.args[0] == msg
|
||
|
|
||
|
|
||
|
def test_checking_classifier_missing_fit_params(iris):
|
||
|
X, y = iris
|
||
|
clf = CheckingClassifier(expected_sample_weight=True)
|
||
|
err_msg = "Expected sample_weight to be passed"
|
||
|
with pytest.raises(AssertionError, match=err_msg):
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"methods_to_check",
|
||
|
[["predict"], ["predict", "predict_proba"]],
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"predict_method", ["predict", "predict_proba", "decision_function", "score"]
|
||
|
)
|
||
|
def test_checking_classifier_methods_to_check(iris, methods_to_check, predict_method):
|
||
|
# check that methods_to_check allows to bypass checks
|
||
|
X, y = iris
|
||
|
|
||
|
clf = CheckingClassifier(
|
||
|
check_X=sparse.issparse,
|
||
|
methods_to_check=methods_to_check,
|
||
|
)
|
||
|
|
||
|
clf.fit(X, y)
|
||
|
if predict_method in methods_to_check:
|
||
|
with pytest.raises(AssertionError):
|
||
|
getattr(clf, predict_method)(X)
|
||
|
else:
|
||
|
getattr(clf, predict_method)(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"response_methods",
|
||
|
[
|
||
|
["predict"],
|
||
|
["predict", "predict_proba"],
|
||
|
["predict", "decision_function"],
|
||
|
["predict", "predict_proba", "decision_function"],
|
||
|
],
|
||
|
)
|
||
|
def test_mock_estimator_on_off_prediction(iris, response_methods):
|
||
|
X, y = iris
|
||
|
estimator = _MockEstimatorOnOffPrediction(response_methods=response_methods)
|
||
|
|
||
|
estimator.fit(X, y)
|
||
|
assert hasattr(estimator, "classes_")
|
||
|
assert_array_equal(estimator.classes_, np.unique(y))
|
||
|
|
||
|
possible_responses = ["predict", "predict_proba", "decision_function"]
|
||
|
for response in possible_responses:
|
||
|
if response in response_methods:
|
||
|
assert hasattr(estimator, response)
|
||
|
assert getattr(estimator, response)(X) == response
|
||
|
else:
|
||
|
assert not hasattr(estimator, response)
|