ai-content-maker/.venv/Lib/site-packages/sklearn/utils/tests/test_parallel.py

101 lines
3.6 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import time
import joblib
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from sklearn import config_context, get_config
from sklearn.compose import make_column_transformer
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.utils.parallel import Parallel, delayed
def get_working_memory():
return get_config()["working_memory"]
@pytest.mark.parametrize("n_jobs", [1, 2])
@pytest.mark.parametrize("backend", ["loky", "threading", "multiprocessing"])
def test_configuration_passes_through_to_joblib(n_jobs, backend):
# Tests that the global global configuration is passed to joblib jobs
with config_context(working_memory=123):
results = Parallel(n_jobs=n_jobs, backend=backend)(
delayed(get_working_memory)() for _ in range(2)
)
assert_array_equal(results, [123] * 2)
def test_parallel_delayed_warnings():
"""Informative warnings should be raised when mixing sklearn and joblib API"""
# We should issue a warning when one wants to use sklearn.utils.fixes.Parallel
# with joblib.delayed. The config will not be propagated to the workers.
warn_msg = "`sklearn.utils.parallel.Parallel` needs to be used in conjunction"
with pytest.warns(UserWarning, match=warn_msg) as records:
Parallel()(joblib.delayed(time.sleep)(0) for _ in range(10))
assert len(records) == 10
# We should issue a warning if one wants to use sklearn.utils.fixes.delayed with
# joblib.Parallel
warn_msg = (
"`sklearn.utils.parallel.delayed` should be used with "
"`sklearn.utils.parallel.Parallel` to make it possible to propagate"
)
with pytest.warns(UserWarning, match=warn_msg) as records:
joblib.Parallel()(delayed(time.sleep)(0) for _ in range(10))
assert len(records) == 10
@pytest.mark.parametrize("n_jobs", [1, 2])
def test_dispatch_config_parallel(n_jobs):
"""Check that we properly dispatch the configuration in parallel processing.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/25239
"""
pd = pytest.importorskip("pandas")
iris = load_iris(as_frame=True)
class TransformerRequiredDataFrame(StandardScaler):
def fit(self, X, y=None):
assert isinstance(X, pd.DataFrame), "X should be a DataFrame"
return super().fit(X, y)
def transform(self, X, y=None):
assert isinstance(X, pd.DataFrame), "X should be a DataFrame"
return super().transform(X, y)
dropper = make_column_transformer(
("drop", [0]),
remainder="passthrough",
n_jobs=n_jobs,
)
param_grid = {"randomforestclassifier__max_depth": [1, 2, 3]}
search_cv = GridSearchCV(
make_pipeline(
dropper,
TransformerRequiredDataFrame(),
RandomForestClassifier(n_estimators=5, n_jobs=n_jobs),
),
param_grid,
cv=5,
n_jobs=n_jobs,
error_score="raise", # this search should not fail
)
# make sure that `fit` would fail in case we don't request dataframe
with pytest.raises(AssertionError, match="X should be a DataFrame"):
search_cv.fit(iris.data, iris.target)
with config_context(transform_output="pandas"):
# we expect each intermediate steps to output a DataFrame
search_cv.fit(iris.data, iris.target)
assert not np.isnan(search_cv.cv_results_["mean_test_score"]).any()