ai-content-maker/.venv/Lib/site-packages/spacy/tests/parser/test_preset_sbd.py

89 lines
2.5 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import pytest
from thinc.api import Adam
from spacy import registry
from spacy.attrs import NORM
from spacy.pipeline import DependencyParser
from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
from spacy.tokens import Doc
from spacy.training import Example
from spacy.vocab import Vocab
@pytest.fixture
def vocab():
return Vocab(lex_attr_getters={NORM: lambda s: s})
def _parser_example(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
gold = {"heads": [1, 1, 3, 3], "deps": ["right", "ROOT", "left", "ROOT"]}
return Example.from_dict(doc, gold)
@pytest.fixture
def parser(vocab):
vocab.strings.add("ROOT")
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
parser = DependencyParser(vocab, model)
parser.cfg["token_vector_width"] = 4
parser.cfg["hidden_width"] = 32
# parser.add_label('right')
parser.add_label("left")
parser.initialize(lambda: [_parser_example(parser)])
sgd = Adam(0.001)
for i in range(10):
losses = {}
doc = Doc(vocab, words=["a", "b", "c", "d"])
example = Example.from_dict(
doc, {"heads": [1, 1, 3, 3], "deps": ["left", "ROOT", "left", "ROOT"]}
)
parser.update([example], sgd=sgd, losses=losses)
return parser
def test_no_sentences(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc = parser(doc)
assert len(list(doc.sents)) >= 1
def test_sents_1(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[2].sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) >= 2
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[1].sent_start = False
doc[2].sent_start = True
doc[3].sent_start = False
doc = parser(doc)
assert len(list(doc.sents)) == 2
def test_sents_1_2(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[1].sent_start = True
doc[2].sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) >= 3
def test_sents_1_3(parser):
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[0].is_sent_start = True
doc[1].is_sent_start = True
doc[2].is_sent_start = None
doc[3].is_sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) >= 3
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
doc[0].is_sent_start = True
doc[1].is_sent_start = True
doc[2].is_sent_start = False
doc[3].is_sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) == 3