ai-content-maker/.venv/Lib/site-packages/spacy/tests/pipeline/test_textcat.py

973 lines
39 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import random
import numpy.random
import pytest
from numpy.testing import assert_almost_equal
from thinc.api import Config, compounding, fix_random_seed, get_current_ops
from wasabi import msg
import spacy
from spacy import util
from spacy.cli.evaluate import print_prf_per_type, print_textcats_auc_per_cat
from spacy.lang.en import English
from spacy.language import Language
from spacy.pipeline import TextCategorizer
from spacy.pipeline.textcat import (
single_label_bow_config,
single_label_cnn_config,
single_label_default_config,
)
from spacy.pipeline.textcat_multilabel import (
multi_label_bow_config,
multi_label_cnn_config,
multi_label_default_config,
)
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
from spacy.scorer import Scorer
from spacy.tokens import Doc, DocBin
from spacy.training import Example
from spacy.training.initialize import init_nlp
# Ensure that the architecture gets added to the registry.
from ..tok2vec import build_lazy_init_tok2vec as _
from ..util import make_tempdir
TRAIN_DATA_SINGLE_LABEL = [
("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}),
("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}),
]
TRAIN_DATA_MULTI_LABEL = [
("I'm angry and confused", {"cats": {"ANGRY": 1.0, "CONFUSED": 1.0, "HAPPY": 0.0}}),
("I'm confused but happy", {"cats": {"ANGRY": 0.0, "CONFUSED": 1.0, "HAPPY": 1.0}}),
]
lazy_init_model_config = """
[model]
@architectures = "test.LazyInitTok2Vec.v1"
width = 96
"""
LAZY_INIT_TOK2VEC_MODEL = Config().from_str(lazy_init_model_config)["model"]
def make_get_examples_single_label(nlp):
train_examples = []
for t in TRAIN_DATA_SINGLE_LABEL:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
def get_examples():
return train_examples
return get_examples
def make_get_examples_multi_label(nlp):
train_examples = []
for t in TRAIN_DATA_MULTI_LABEL:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
def get_examples():
return train_examples
return get_examples
@pytest.mark.issue(3611)
def test_issue3611():
"""Test whether adding n-grams in the textcat works even when n > token length of some docs"""
unique_classes = ["offensive", "inoffensive"]
x_train = [
"This is an offensive text",
"This is the second offensive text",
"inoff",
]
y_train = ["offensive", "offensive", "inoffensive"]
nlp = spacy.blank("en")
# preparing the data
train_data = []
for text, train_instance in zip(x_train, y_train):
cat_dict = {label: label == train_instance for label in unique_classes}
train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict}))
# add a text categorizer component
model = {
"@architectures": "spacy.TextCatBOW.v1",
"exclusive_classes": True,
"ngram_size": 2,
"no_output_layer": False,
}
textcat = nlp.add_pipe("textcat", config={"model": model}, last=True)
for label in unique_classes:
textcat.add_label(label)
# training the network
with nlp.select_pipes(enable="textcat"):
optimizer = nlp.initialize()
for i in range(3):
losses = {}
batches = util.minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses)
@pytest.mark.issue(4030)
def test_issue4030():
"""Test whether textcat works fine with empty doc"""
unique_classes = ["offensive", "inoffensive"]
x_train = [
"This is an offensive text",
"This is the second offensive text",
"inoff",
]
y_train = ["offensive", "offensive", "inoffensive"]
nlp = spacy.blank("en")
# preparing the data
train_data = []
for text, train_instance in zip(x_train, y_train):
cat_dict = {label: label == train_instance for label in unique_classes}
train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict}))
# add a text categorizer component
model = {
"@architectures": "spacy.TextCatBOW.v1",
"exclusive_classes": True,
"ngram_size": 2,
"no_output_layer": False,
}
textcat = nlp.add_pipe("textcat", config={"model": model}, last=True)
for label in unique_classes:
textcat.add_label(label)
# training the network
with nlp.select_pipes(enable="textcat"):
optimizer = nlp.initialize()
for i in range(3):
losses = {}
batches = util.minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses)
# processing of an empty doc should result in 0.0 for all categories
doc = nlp("")
assert doc.cats["offensive"] == 0.0
assert doc.cats["inoffensive"] == 0.0
@pytest.mark.parametrize(
"textcat_config",
[
single_label_default_config,
single_label_bow_config,
single_label_cnn_config,
multi_label_default_config,
multi_label_bow_config,
multi_label_cnn_config,
],
)
@pytest.mark.issue(5551)
def test_issue5551(textcat_config):
"""Test that after fixing the random seed, the results of the pipeline are truly identical"""
component = "textcat"
pipe_cfg = Config().from_str(textcat_config)
results = []
for i in range(3):
fix_random_seed(0)
nlp = English()
text = "Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g."
annots = {"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}}
pipe = nlp.add_pipe(component, config=pipe_cfg, last=True)
for label in set(annots["cats"]):
pipe.add_label(label)
# Train
nlp.initialize()
doc = nlp.make_doc(text)
nlp.update([Example.from_dict(doc, annots)])
# Store the result of each iteration
result = pipe.model.predict([doc])
results.append(result[0])
# All results should be the same because of the fixed seed
assert len(results) == 3
ops = get_current_ops()
assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[1]), decimal=5)
assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[2]), decimal=5)
CONFIG_ISSUE_6908 = """
[paths]
train = "TRAIN_PLACEHOLDER"
raw = null
init_tok2vec = null
vectors = null
[system]
seed = 0
gpu_allocator = null
[nlp]
lang = "en"
pipeline = ["textcat"]
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
batch_size = 1000
[components]
[components.textcat]
factory = "TEXTCAT_PLACEHOLDER"
[corpora]
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths:train}
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths:train}
[training]
train_corpus = "corpora.train"
dev_corpus = "corpora.dev"
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
frozen_components = []
before_to_disk = null
[pretraining]
[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null
[initialize.components]
[initialize.components.textcat]
labels = ['label1', 'label2']
[initialize.tokenizer]
"""
@pytest.mark.parametrize(
"component_name",
["textcat", "textcat_multilabel"],
)
@pytest.mark.issue(6908)
def test_issue6908(component_name):
"""Test intializing textcat with labels in a list"""
def create_data(out_file):
nlp = spacy.blank("en")
doc = nlp.make_doc("Some text")
doc.cats = {"label1": 0, "label2": 1}
out_data = DocBin(docs=[doc]).to_bytes()
with out_file.open("wb") as file_:
file_.write(out_data)
with make_tempdir() as tmp_path:
train_path = tmp_path / "train.spacy"
create_data(train_path)
config_str = CONFIG_ISSUE_6908.replace("TEXTCAT_PLACEHOLDER", component_name)
config_str = config_str.replace("TRAIN_PLACEHOLDER", train_path.as_posix())
config = util.load_config_from_str(config_str)
init_nlp(config)
@pytest.mark.issue(7019)
def test_issue7019():
scores = {"LABEL_A": 0.39829102, "LABEL_B": 0.938298329382, "LABEL_C": None}
print_textcats_auc_per_cat(msg, scores)
scores = {
"LABEL_A": {"p": 0.3420302, "r": 0.3929020, "f": 0.49823928932},
"LABEL_B": {"p": None, "r": None, "f": None},
}
print_prf_per_type(msg, scores, name="foo", type="bar")
@pytest.mark.issue(9904)
def test_issue9904():
nlp = Language()
textcat = nlp.add_pipe("textcat")
get_examples = make_get_examples_single_label(nlp)
nlp.initialize(get_examples)
examples = get_examples()
scores = textcat.predict([eg.predicted for eg in examples])
loss = textcat.get_loss(examples, scores)[0]
loss_double_bs = textcat.get_loss(examples * 2, scores.repeat(2, axis=0))[0]
assert loss == pytest.approx(loss_double_bs)
@pytest.mark.skip(reason="Test is flakey when run with others")
def test_simple_train():
nlp = Language()
textcat = nlp.add_pipe("textcat")
textcat.add_label("answer")
nlp.initialize()
for i in range(5):
for text, answer in [
("aaaa", 1.0),
("bbbb", 0),
("aa", 1.0),
("bbbbbbbbb", 0.0),
("aaaaaa", 1),
]:
nlp.update((text, {"cats": {"answer": answer}}))
doc = nlp("aaa")
assert "answer" in doc.cats
assert doc.cats["answer"] >= 0.5
@pytest.mark.skip(reason="Test is flakey when run with others")
def test_textcat_learns_multilabel():
random.seed(5)
numpy.random.seed(5)
docs = []
nlp = Language()
letters = ["a", "b", "c"]
for w1 in letters:
for w2 in letters:
cats = {letter: float(w2 == letter) for letter in letters}
docs.append((Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3), cats))
random.shuffle(docs)
textcat = TextCategorizer(nlp.vocab, width=8)
for letter in letters:
textcat.add_label(letter)
optimizer = textcat.initialize(lambda: [])
for i in range(30):
losses = {}
examples = [Example.from_dict(doc, {"cats": cats}) for doc, cat in docs]
textcat.update(examples, sgd=optimizer, losses=losses)
random.shuffle(docs)
for w1 in letters:
for w2 in letters:
doc = Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3)
truth = {letter: w2 == letter for letter in letters}
textcat(doc)
for cat, score in doc.cats.items():
if not truth[cat]:
assert score < 0.5
else:
assert score > 0.5
@pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"])
def test_label_types(name):
nlp = Language()
textcat = nlp.add_pipe(name)
textcat.add_label("answer")
with pytest.raises(ValueError):
textcat.add_label(9)
# textcat requires at least two labels
if name == "textcat":
with pytest.raises(ValueError):
nlp.initialize()
else:
nlp.initialize()
@pytest.mark.parametrize(
"name,get_examples",
[
("textcat", make_get_examples_single_label),
("textcat_multilabel", make_get_examples_multi_label),
],
)
def test_invalid_label_value(name, get_examples):
nlp = Language()
textcat = nlp.add_pipe(name)
example_getter = get_examples(nlp)
def invalid_examples():
# make one example with an invalid score
examples = example_getter()
ref = examples[0].reference
key = list(ref.cats.keys())[0]
ref.cats[key] = 2.0
return examples
with pytest.raises(ValueError):
nlp.initialize(get_examples=invalid_examples)
@pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"])
def test_no_label(name):
nlp = Language()
nlp.add_pipe(name)
with pytest.raises(ValueError):
nlp.initialize()
@pytest.mark.parametrize(
"name,get_examples",
[
("textcat", make_get_examples_single_label),
("textcat_multilabel", make_get_examples_multi_label),
],
)
def test_implicit_label(name, get_examples):
nlp = Language()
nlp.add_pipe(name)
nlp.initialize(get_examples=get_examples(nlp))
# fmt: off
@pytest.mark.slow
@pytest.mark.parametrize(
"name,textcat_config",
[
# BOW V1
("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
# ENSEMBLE V1
("textcat", {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
# ENSEMBLE V2
("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}}),
("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}}),
("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}}),
("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}}),
# CNN
("textcat", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
],
)
# fmt: on
def test_no_resize(name, textcat_config):
"""The old textcat architectures weren't resizable"""
nlp = Language()
pipe_config = {"model": textcat_config}
textcat = nlp.add_pipe(name, config=pipe_config)
textcat.add_label("POSITIVE")
textcat.add_label("NEGATIVE")
nlp.initialize()
assert textcat.model.maybe_get_dim("nO") in [2, None]
# this throws an error because the textcat can't be resized after initialization
with pytest.raises(ValueError):
textcat.add_label("NEUTRAL")
# fmt: off
@pytest.mark.parametrize(
"name,textcat_config",
[
# BOW V3
("textcat", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
("textcat", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
# CNN
("textcat", {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}),
("textcat_multilabel", {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}),
],
)
# fmt: on
def test_resize(name, textcat_config):
"""The new textcat architectures are resizable"""
nlp = Language()
pipe_config = {"model": textcat_config}
textcat = nlp.add_pipe(name, config=pipe_config)
textcat.add_label("POSITIVE")
textcat.add_label("NEGATIVE")
assert textcat.model.maybe_get_dim("nO") in [2, None]
nlp.initialize()
assert textcat.model.maybe_get_dim("nO") in [2, None]
textcat.add_label("NEUTRAL")
assert textcat.model.maybe_get_dim("nO") in [3, None]
# fmt: off
@pytest.mark.parametrize(
"name,textcat_config",
[
# BOW v3
("textcat", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
("textcat", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
# REDUCE
("textcat", {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}),
("textcat_multilabel", {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}),
],
)
# fmt: on
def test_resize_same_results(name, textcat_config):
# Ensure that the resized textcat classifiers still produce the same results for old labels
fix_random_seed(0)
nlp = English()
pipe_config = {"model": textcat_config}
textcat = nlp.add_pipe(name, config=pipe_config)
train_examples = []
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert textcat.model.maybe_get_dim("nO") in [2, None]
for i in range(5):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
# test the trained model before resizing
test_text = "I am happy."
doc = nlp(test_text)
assert len(doc.cats) == 2
pos_pred = doc.cats["POSITIVE"]
neg_pred = doc.cats["NEGATIVE"]
# test the trained model again after resizing
textcat.add_label("NEUTRAL")
doc = nlp(test_text)
assert len(doc.cats) == 3
assert doc.cats["POSITIVE"] == pos_pred
assert doc.cats["NEGATIVE"] == neg_pred
assert doc.cats["NEUTRAL"] <= 1
for i in range(5):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
# test the trained model again after training further with new label
doc = nlp(test_text)
assert len(doc.cats) == 3
assert doc.cats["POSITIVE"] != pos_pred
assert doc.cats["NEGATIVE"] != neg_pred
for cat in doc.cats:
assert doc.cats[cat] <= 1
def test_error_with_multi_labels():
nlp = Language()
nlp.add_pipe("textcat")
train_examples = []
for text, annotations in TRAIN_DATA_MULTI_LABEL:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
with pytest.raises(ValueError):
nlp.initialize(get_examples=lambda: train_examples)
# fmt: off
@pytest.mark.parametrize(
"name,textcat_config",
[
# ENSEMBLE V2
("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": LAZY_INIT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}}),
("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": LAZY_INIT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "ngram_size": 5, "no_output_layer": False}}),
# PARAMETRIC ATTENTION V1
("textcat", {"@architectures": "spacy.TextCatParametricAttention.v1", "tok2vec": LAZY_INIT_TOK2VEC_MODEL, "exclusive_classes": True}),
("textcat_multilabel", {"@architectures": "spacy.TextCatParametricAttention.v1", "tok2vec": LAZY_INIT_TOK2VEC_MODEL, "exclusive_classes": False}),
# REDUCE
("textcat", {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": LAZY_INIT_TOK2VEC_MODEL, "exclusive_classes": True, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}),
("textcat_multilabel", {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": LAZY_INIT_TOK2VEC_MODEL, "exclusive_classes": False, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}),
],
)
# fmt: on
def test_tok2vec_lazy_init(name, textcat_config):
# Check that we can properly initialize and use a textcat model using
# a lazily-initialized tok2vec.
nlp = English()
pipe_config = {"model": textcat_config}
textcat = nlp.add_pipe(name, config=pipe_config)
textcat.add_label("POSITIVE")
textcat.add_label("NEGATIVE")
nlp.initialize()
nlp.pipe(["This is a test."])
@pytest.mark.parametrize(
"name,get_examples, train_data",
[
("textcat", make_get_examples_single_label, TRAIN_DATA_SINGLE_LABEL),
("textcat_multilabel", make_get_examples_multi_label, TRAIN_DATA_MULTI_LABEL),
],
)
def test_initialize_examples(name, get_examples, train_data):
nlp = Language()
textcat = nlp.add_pipe(name)
for text, annotations in train_data:
for label, value in annotations.get("cats").items():
textcat.add_label(label)
# you shouldn't really call this more than once, but for testing it should be fine
nlp.initialize()
nlp.initialize(get_examples=get_examples(nlp))
with pytest.raises(TypeError):
nlp.initialize(get_examples=lambda: None)
with pytest.raises(TypeError):
nlp.initialize(get_examples=get_examples())
def test_overfitting_IO():
# Simple test to try and quickly overfit the single-label textcat component - ensuring the ML models work correctly
fix_random_seed(0)
nlp = English()
textcat = nlp.add_pipe("textcat")
train_examples = []
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert textcat.model.get_dim("nO") == 2
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["textcat"] < 0.01
# test the trained model
test_text = "I am happy."
doc = nlp(test_text)
cats = doc.cats
assert cats["POSITIVE"] > 0.9
assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.001)
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
cats2 = doc2.cats
assert cats2["POSITIVE"] > 0.9
assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.001)
# Test scoring
scores = nlp.evaluate(train_examples)
assert scores["cats_micro_f"] == 1.0
assert scores["cats_macro_f"] == 1.0
assert scores["cats_macro_auc"] == 1.0
assert scores["cats_score"] == 1.0
assert "cats_score_desc" in scores
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
batch_cats_1 = [doc.cats for doc in nlp.pipe(texts)]
batch_cats_2 = [doc.cats for doc in nlp.pipe(texts)]
no_batch_cats = [doc.cats for doc in [nlp(text) for text in texts]]
for cats_1, cats_2 in zip(batch_cats_1, batch_cats_2):
for cat in cats_1:
assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
for cats_1, cats_2 in zip(batch_cats_1, no_batch_cats):
for cat in cats_1:
assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
def test_overfitting_IO_multi():
# Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
fix_random_seed(0)
nlp = English()
textcat = nlp.add_pipe("textcat_multilabel")
train_examples = []
for text, annotations in TRAIN_DATA_MULTI_LABEL:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert textcat.model.get_dim("nO") == 3
for i in range(100):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["textcat_multilabel"] < 0.01
# test the trained model
test_text = "I am confused but happy."
doc = nlp(test_text)
cats = doc.cats
assert cats["HAPPY"] > 0.9
assert cats["CONFUSED"] > 0.9
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
cats2 = doc2.cats
assert cats2["HAPPY"] > 0.9
assert cats2["CONFUSED"] > 0.9
# Test scoring
scores = nlp.evaluate(train_examples)
assert scores["cats_micro_f"] == 1.0
assert scores["cats_macro_f"] == 1.0
assert "cats_score_desc" in scores
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
batch_deps_1 = [doc.cats for doc in nlp.pipe(texts)]
batch_deps_2 = [doc.cats for doc in nlp.pipe(texts)]
no_batch_deps = [doc.cats for doc in [nlp(text) for text in texts]]
for cats_1, cats_2 in zip(batch_deps_1, batch_deps_2):
for cat in cats_1:
assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
for cats_1, cats_2 in zip(batch_deps_1, no_batch_deps):
for cat in cats_1:
assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
# fmt: off
@pytest.mark.slow
@pytest.mark.parametrize(
"name,train_data,textcat_config",
[
# BOW V1
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}),
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}),
# ENSEMBLE V1
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
# CNN V1
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
# BOW V2
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}),
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}),
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 3, "no_output_layer": True}),
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": True}),
# BOW V3
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}),
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}),
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "ngram_size": 3, "no_output_layer": True}),
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": True}),
# ENSEMBLE V2
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}}),
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "ngram_size": 5, "no_output_layer": False}}),
# CNN V2 (legacy)
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
# PARAMETRIC ATTENTION V1
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatParametricAttention.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatParametricAttention.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
# REDUCE V1
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}),
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}),
],
)
# fmt: on
def test_textcat_configs(name, train_data, textcat_config):
pipe_config = {"model": textcat_config}
nlp = English()
textcat = nlp.add_pipe(name, config=pipe_config)
train_examples = []
for text, annotations in train_data:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for label, value in annotations.get("cats").items():
textcat.add_label(label)
optimizer = nlp.initialize()
for i in range(5):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
def test_positive_class():
nlp = English()
textcat = nlp.add_pipe("textcat")
get_examples = make_get_examples_single_label(nlp)
textcat.initialize(get_examples, labels=["POS", "NEG"], positive_label="POS")
assert textcat.labels == ("POS", "NEG")
assert textcat.cfg["positive_label"] == "POS"
textcat_multilabel = nlp.add_pipe("textcat_multilabel")
get_examples = make_get_examples_multi_label(nlp)
with pytest.raises(TypeError):
textcat_multilabel.initialize(
get_examples, labels=["POS", "NEG"], positive_label="POS"
)
textcat_multilabel.initialize(get_examples, labels=["FICTION", "DRAMA"])
assert textcat_multilabel.labels == ("FICTION", "DRAMA")
assert "positive_label" not in textcat_multilabel.cfg
def test_positive_class_not_present():
nlp = English()
textcat = nlp.add_pipe("textcat")
get_examples = make_get_examples_single_label(nlp)
with pytest.raises(ValueError):
textcat.initialize(get_examples, labels=["SOME", "THING"], positive_label="POS")
def test_positive_class_not_binary():
nlp = English()
textcat = nlp.add_pipe("textcat")
get_examples = make_get_examples_multi_label(nlp)
with pytest.raises(ValueError):
textcat.initialize(
get_examples, labels=["SOME", "THING", "POS"], positive_label="POS"
)
def test_textcat_evaluation():
train_examples = []
nlp = English()
ref1 = nlp("one")
ref1.cats = {"winter": 1.0, "summer": 1.0, "spring": 1.0, "autumn": 1.0}
pred1 = nlp("one")
pred1.cats = {"winter": 1.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0}
train_examples.append(Example(pred1, ref1))
ref2 = nlp("two")
ref2.cats = {"winter": 0.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0}
pred2 = nlp("two")
pred2.cats = {"winter": 1.0, "summer": 0.0, "spring": 0.0, "autumn": 1.0}
train_examples.append(Example(pred2, ref2))
scores = Scorer().score_cats(
train_examples, "cats", labels=["winter", "summer", "spring", "autumn"]
)
assert scores["cats_f_per_type"]["winter"]["p"] == 1 / 2
assert scores["cats_f_per_type"]["winter"]["r"] == 1 / 1
assert scores["cats_f_per_type"]["summer"]["p"] == 0
assert scores["cats_f_per_type"]["summer"]["r"] == 0 / 1
assert scores["cats_f_per_type"]["spring"]["p"] == 1 / 1
assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 2
assert scores["cats_f_per_type"]["autumn"]["p"] == 2 / 2
assert scores["cats_f_per_type"]["autumn"]["r"] == 2 / 2
assert scores["cats_micro_p"] == 4 / 5
assert scores["cats_micro_r"] == 4 / 6
@pytest.mark.parametrize(
"multi_label,spring_p",
[(True, 1 / 1), (False, 1 / 2)],
)
def test_textcat_eval_missing(multi_label: bool, spring_p: float):
"""
multi-label: the missing 'spring' in gold_doc_2 doesn't incur a penalty
exclusive labels: the missing 'spring' in gold_doc_2 is interpreted as 0.0"""
train_examples = []
nlp = English()
ref1 = nlp("one")
ref1.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
pred1 = nlp("one")
pred1.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
train_examples.append(Example(ref1, pred1))
ref2 = nlp("two")
# reference 'spring' is missing, pred 'spring' is 1
ref2.cats = {"winter": 0.0, "summer": 0.0, "autumn": 1.0}
pred2 = nlp("two")
pred2.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
train_examples.append(Example(pred2, ref2))
scores = Scorer().score_cats(
train_examples,
"cats",
labels=["winter", "summer", "spring", "autumn"],
multi_label=multi_label,
)
assert scores["cats_f_per_type"]["spring"]["p"] == spring_p
assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 1
@pytest.mark.parametrize(
"multi_label,expected_loss",
[(True, 0), (False, 0.125)],
)
def test_textcat_loss(multi_label: bool, expected_loss: float):
"""
multi-label: the missing 'spring' in gold_doc_2 doesn't incur an increase in loss
exclusive labels: the missing 'spring' in gold_doc_2 is interpreted as 0.0 and adds to the loss"""
train_examples = []
nlp = English()
doc1 = nlp("one")
cats1 = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
train_examples.append(Example.from_dict(doc1, {"cats": cats1}))
doc2 = nlp("two")
cats2 = {"winter": 0.0, "summer": 0.0, "autumn": 1.0}
train_examples.append(Example.from_dict(doc2, {"cats": cats2}))
if multi_label:
textcat = nlp.add_pipe("textcat_multilabel")
else:
textcat = nlp.add_pipe("textcat")
assert isinstance(textcat, TextCategorizer)
textcat.initialize(lambda: train_examples)
scores = textcat.model.ops.asarray(
[[0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0]], dtype="f" # type: ignore
)
loss, d_scores = textcat.get_loss(train_examples, scores)
assert loss == expected_loss
def test_textcat_multilabel_threshold():
# Ensure the scorer can be called with a different threshold
nlp = English()
nlp.add_pipe("textcat_multilabel")
train_examples = []
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
nlp.initialize(get_examples=lambda: train_examples)
# score the model (it's not actually trained but that doesn't matter)
scores = nlp.evaluate(train_examples)
assert 0 <= scores["cats_score"] <= 1
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0})
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
macro_f = scores["cats_score"]
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
scores = nlp.evaluate(
train_examples, scorer_cfg={"threshold": 0, "positive_label": "POSITIVE"}
)
pos_f = scores["cats_score"]
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
assert pos_f >= macro_f
def test_textcat_multi_threshold():
# Ensure the scorer can be called with a different threshold
nlp = English()
nlp.add_pipe("textcat_multilabel")
train_examples = []
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
nlp.initialize(get_examples=lambda: train_examples)
# score the model (it's not actually trained but that doesn't matter)
scores = nlp.evaluate(train_examples)
assert 0 <= scores["cats_score"] <= 1
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0})
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
@pytest.mark.parametrize(
"component_name,scorer",
[
("textcat", "spacy.textcat_scorer.v1"),
("textcat_multilabel", "spacy.textcat_multilabel_scorer.v1"),
],
)
def test_textcat_legacy_scorers(component_name, scorer):
"""Check that legacy scorers are registered and produce the expected score
keys."""
nlp = English()
nlp.add_pipe(component_name, config={"scorer": {"@scorers": scorer}})
train_examples = []
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
nlp.initialize(get_examples=lambda: train_examples)
# score the model (it's not actually trained but that doesn't matter)
scores = nlp.evaluate(train_examples)
assert 0 <= scores["cats_score"] <= 1