ai-content-maker/.venv/Lib/site-packages/spacy/training/iob_utils.py

241 lines
8.9 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import warnings
from typing import Dict, Iterable, Iterator, List, Tuple, Union, cast
from ..errors import Errors, Warnings
from ..tokens import Doc, Span
def iob_to_biluo(tags: Iterable[str]) -> List[str]:
out: List[str] = []
tags = list(tags)
while tags:
out.extend(_consume_os(tags))
out.extend(_consume_ent(tags))
return out
def biluo_to_iob(tags: Iterable[str]) -> List[str]:
out = []
for tag in tags:
if tag is None:
out.append(tag)
else:
tag = tag.replace("U-", "B-", 1).replace("L-", "I-", 1)
out.append(tag)
return out
def _consume_os(tags: List[str]) -> Iterator[str]:
while tags and tags[0] == "O":
yield tags.pop(0)
def _consume_ent(tags: List[str]) -> List[str]:
if not tags:
return []
tag = tags.pop(0)
target_in = "I" + tag[1:]
target_last = "L" + tag[1:]
length = 1
while tags and tags[0] in {target_in, target_last}:
length += 1
tags.pop(0)
label = tag[2:]
if length == 1:
if len(label) == 0:
raise ValueError(Errors.E177.format(tag=tag))
return ["U-" + label]
else:
start = "B-" + label
end = "L-" + label
middle = [f"I-{label}" for _ in range(1, length - 1)]
return [start] + middle + [end]
def doc_to_biluo_tags(doc: Doc, missing: str = "O"):
return offsets_to_biluo_tags(
doc,
[(ent.start_char, ent.end_char, ent.label_) for ent in doc.ents],
missing=missing,
)
def _doc_to_biluo_tags_with_partial(doc: Doc) -> List[str]:
ents = doc_to_biluo_tags(doc, missing="-")
for i, token in enumerate(doc):
if token.ent_iob == 2:
ents[i] = "O"
return ents
def offsets_to_biluo_tags(
doc: Doc, entities: Iterable[Tuple[int, int, Union[str, int]]], missing: str = "O"
) -> List[str]:
"""Encode labelled spans into per-token tags, using the
Begin/In/Last/Unit/Out scheme (BILUO).
doc (Doc): The document that the entity offsets refer to. The output tags
will refer to the token boundaries within the document.
entities (iterable): A sequence of `(start, end, label)` triples. `start`
and `end` should be character-offset integers denoting the slice into
the original string.
missing (str): The label used for missing values, e.g. if tokenization
doesnt align with the entity offsets. Defaults to "O".
RETURNS (list): A list of unicode strings, describing the tags. Each tag
string will be of the form either "", "O" or "{action}-{label}", where
action is one of "B", "I", "L", "U". The missing label is used where the
entity offsets don't align with the tokenization in the `Doc` object.
The training algorithm will view these as missing values. "O" denotes a
non-entity token. "B" denotes the beginning of a multi-token entity,
"I" the inside of an entity of three or more tokens, and "L" the end
of an entity of two or more tokens. "U" denotes a single-token entity.
EXAMPLE:
>>> text = 'I like London.'
>>> entities = [(len('I like '), len('I like London'), 'LOC')]
>>> doc = nlp.tokenizer(text)
>>> tags = offsets_to_biluo_tags(doc, entities)
>>> assert tags == ["O", "O", 'U-LOC', "O"]
"""
# Ensure no overlapping entity labels exist
tokens_in_ents: Dict[int, Tuple[int, int, Union[str, int]]] = {}
starts = {token.idx: token.i for token in doc}
ends = {token.idx + len(token): token.i for token in doc}
biluo = ["-" for _ in doc]
# Handle entity cases
for start_char, end_char, label in entities:
if not label:
for s in starts: # account for many-to-one
if s >= start_char and s < end_char:
biluo[starts[s]] = "O"
else:
for token_index in range(start_char, end_char):
if token_index in tokens_in_ents.keys():
raise ValueError(
Errors.E103.format(
span1=(
tokens_in_ents[token_index][0],
tokens_in_ents[token_index][1],
tokens_in_ents[token_index][2],
),
span2=(start_char, end_char, label),
)
)
tokens_in_ents[token_index] = (start_char, end_char, label)
start_token = starts.get(start_char)
end_token = ends.get(end_char)
# Only interested if the tokenization is correct
if start_token is not None and end_token is not None:
if start_token == end_token:
biluo[start_token] = f"U-{label}"
else:
biluo[start_token] = f"B-{label}"
for i in range(start_token + 1, end_token):
biluo[i] = f"I-{label}"
biluo[end_token] = f"L-{label}"
# Now distinguish the O cases from ones where we miss the tokenization
entity_chars = set()
for start_char, end_char, label in entities:
for i in range(start_char, end_char):
entity_chars.add(i)
for token in doc:
for i in range(token.idx, token.idx + len(token)):
if i in entity_chars:
break
else:
biluo[token.i] = missing
if "-" in biluo and missing != "-":
ent_str = str(entities)
warnings.warn(
Warnings.W030.format(
text=doc.text[:50] + "..." if len(doc.text) > 50 else doc.text,
entities=ent_str[:50] + "..." if len(ent_str) > 50 else ent_str,
)
)
return biluo
def biluo_tags_to_spans(doc: Doc, tags: Iterable[str]) -> List[Span]:
"""Encode per-token tags following the BILUO scheme into Span object, e.g.
to overwrite the doc.ents.
doc (Doc): The document that the BILUO tags refer to.
tags (iterable): A sequence of BILUO tags with each tag describing one
token. Each tag string will be of the form of either "", "O" or
"{action}-{label}", where action is one of "B", "I", "L", "U".
RETURNS (list): A sequence of Span objects. Each token with a missing IOB
tag is returned as a Span with an empty label.
"""
token_offsets = tags_to_entities(tags)
spans = []
for label, start_idx, end_idx in token_offsets:
span = Span(doc, start_idx, end_idx + 1, label=label)
spans.append(span)
return spans
def biluo_tags_to_offsets(
doc: Doc, tags: Iterable[str]
) -> List[Tuple[int, int, Union[str, int]]]:
"""Encode per-token tags following the BILUO scheme into entity offsets.
doc (Doc): The document that the BILUO tags refer to.
tags (iterable): A sequence of BILUO tags with each tag describing one
token. Each tags string will be of the form of either "", "O" or
"{action}-{label}", where action is one of "B", "I", "L", "U".
RETURNS (list): A sequence of `(start, end, label)` triples. `start` and
`end` will be character-offset integers denoting the slice into the
original string.
"""
spans = biluo_tags_to_spans(doc, tags)
return [(span.start_char, span.end_char, span.label_) for span in spans]
def tags_to_entities(tags: Iterable[str]) -> List[Tuple[str, int, int]]:
"""Note that the end index returned by this function is inclusive.
To use it for Span creation, increment the end by 1."""
entities = []
start = None
for i, tag in enumerate(tags):
if tag is None or tag.startswith("-"):
# TODO: We shouldn't be getting these malformed inputs. Fix this.
if start is not None:
start = None
else:
entities.append(("", i, i))
elif tag.startswith("O"):
pass
elif tag.startswith("I"):
if start is None:
raise ValueError(
Errors.E067.format(start="I", tags=list(tags)[: i + 1])
)
elif tag.startswith("U"):
entities.append((tag[2:], i, i))
elif tag.startswith("B"):
start = i
elif tag.startswith("L"):
if start is None:
raise ValueError(
Errors.E067.format(start="L", tags=list(tags)[: i + 1])
)
entities.append((tag[2:], start, i))
start = None
else:
raise ValueError(Errors.E068.format(tag=tag))
return entities
def split_bilu_label(label: str) -> Tuple[str, str]:
return cast(Tuple[str, str], label.split("-", 1))
def remove_bilu_prefix(label: str) -> str:
return label.split("-", 1)[1]
# Fallbacks to make backwards-compat easier
offsets_from_biluo_tags = biluo_tags_to_offsets
spans_from_biluo_tags = biluo_tags_to_spans
biluo_tags_from_offsets = offsets_to_biluo_tags