ai-content-maker/.venv/Lib/site-packages/sympy/assumptions/handlers/matrices.py

717 lines
22 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""
This module contains query handlers responsible for Matrices queries:
Square, Symmetric, Invertible etc.
"""
from sympy.logic.boolalg import conjuncts
from sympy.assumptions import Q, ask
from sympy.assumptions.handlers import test_closed_group
from sympy.matrices import MatrixBase
from sympy.matrices.expressions import (BlockMatrix, BlockDiagMatrix, Determinant,
DiagMatrix, DiagonalMatrix, HadamardProduct, Identity, Inverse, MatAdd, MatMul,
MatPow, MatrixExpr, MatrixSlice, MatrixSymbol, OneMatrix, Trace, Transpose,
ZeroMatrix)
from sympy.matrices.expressions.blockmatrix import reblock_2x2
from sympy.matrices.expressions.factorizations import Factorization
from sympy.matrices.expressions.fourier import DFT
from sympy.core.logic import fuzzy_and
from sympy.utilities.iterables import sift
from sympy.core import Basic
from ..predicates.matrices import (SquarePredicate, SymmetricPredicate,
InvertiblePredicate, OrthogonalPredicate, UnitaryPredicate,
FullRankPredicate, PositiveDefinitePredicate, UpperTriangularPredicate,
LowerTriangularPredicate, DiagonalPredicate, IntegerElementsPredicate,
RealElementsPredicate, ComplexElementsPredicate)
def _Factorization(predicate, expr, assumptions):
if predicate in expr.predicates:
return True
# SquarePredicate
@SquarePredicate.register(MatrixExpr)
def _(expr, assumptions):
return expr.shape[0] == expr.shape[1]
# SymmetricPredicate
@SymmetricPredicate.register(MatMul)
def _(expr, assumptions):
factor, mmul = expr.as_coeff_mmul()
if all(ask(Q.symmetric(arg), assumptions) for arg in mmul.args):
return True
# TODO: implement sathandlers system for the matrices.
# Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric).
if ask(Q.diagonal(expr), assumptions):
return True
if len(mmul.args) >= 2 and mmul.args[0] == mmul.args[-1].T:
if len(mmul.args) == 2:
return True
return ask(Q.symmetric(MatMul(*mmul.args[1:-1])), assumptions)
@SymmetricPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
non_negative = ask(~Q.negative(exp), assumptions)
if (non_negative or non_negative == False
and ask(Q.invertible(base), assumptions)):
return ask(Q.symmetric(base), assumptions)
return None
@SymmetricPredicate.register(MatAdd)
def _(expr, assumptions):
return all(ask(Q.symmetric(arg), assumptions) for arg in expr.args)
@SymmetricPredicate.register(MatrixSymbol)
def _(expr, assumptions):
if not expr.is_square:
return False
# TODO: implement sathandlers system for the matrices.
# Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric).
if ask(Q.diagonal(expr), assumptions):
return True
if Q.symmetric(expr) in conjuncts(assumptions):
return True
@SymmetricPredicate.register_many(OneMatrix, ZeroMatrix)
def _(expr, assumptions):
return ask(Q.square(expr), assumptions)
@SymmetricPredicate.register_many(Inverse, Transpose)
def _(expr, assumptions):
return ask(Q.symmetric(expr.arg), assumptions)
@SymmetricPredicate.register(MatrixSlice)
def _(expr, assumptions):
# TODO: implement sathandlers system for the matrices.
# Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric).
if ask(Q.diagonal(expr), assumptions):
return True
if not expr.on_diag:
return None
else:
return ask(Q.symmetric(expr.parent), assumptions)
@SymmetricPredicate.register(Identity)
def _(expr, assumptions):
return True
# InvertiblePredicate
@InvertiblePredicate.register(MatMul)
def _(expr, assumptions):
factor, mmul = expr.as_coeff_mmul()
if all(ask(Q.invertible(arg), assumptions) for arg in mmul.args):
return True
if any(ask(Q.invertible(arg), assumptions) is False
for arg in mmul.args):
return False
@InvertiblePredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
if exp.is_negative == False:
return ask(Q.invertible(base), assumptions)
return None
@InvertiblePredicate.register(MatAdd)
def _(expr, assumptions):
return None
@InvertiblePredicate.register(MatrixSymbol)
def _(expr, assumptions):
if not expr.is_square:
return False
if Q.invertible(expr) in conjuncts(assumptions):
return True
@InvertiblePredicate.register_many(Identity, Inverse)
def _(expr, assumptions):
return True
@InvertiblePredicate.register(ZeroMatrix)
def _(expr, assumptions):
return False
@InvertiblePredicate.register(OneMatrix)
def _(expr, assumptions):
return expr.shape[0] == 1 and expr.shape[1] == 1
@InvertiblePredicate.register(Transpose)
def _(expr, assumptions):
return ask(Q.invertible(expr.arg), assumptions)
@InvertiblePredicate.register(MatrixSlice)
def _(expr, assumptions):
if not expr.on_diag:
return None
else:
return ask(Q.invertible(expr.parent), assumptions)
@InvertiblePredicate.register(MatrixBase)
def _(expr, assumptions):
if not expr.is_square:
return False
return expr.rank() == expr.rows
@InvertiblePredicate.register(MatrixExpr)
def _(expr, assumptions):
if not expr.is_square:
return False
return None
@InvertiblePredicate.register(BlockMatrix)
def _(expr, assumptions):
if not expr.is_square:
return False
if expr.blockshape == (1, 1):
return ask(Q.invertible(expr.blocks[0, 0]), assumptions)
expr = reblock_2x2(expr)
if expr.blockshape == (2, 2):
[[A, B], [C, D]] = expr.blocks.tolist()
if ask(Q.invertible(A), assumptions) == True:
invertible = ask(Q.invertible(D - C * A.I * B), assumptions)
if invertible is not None:
return invertible
if ask(Q.invertible(B), assumptions) == True:
invertible = ask(Q.invertible(C - D * B.I * A), assumptions)
if invertible is not None:
return invertible
if ask(Q.invertible(C), assumptions) == True:
invertible = ask(Q.invertible(B - A * C.I * D), assumptions)
if invertible is not None:
return invertible
if ask(Q.invertible(D), assumptions) == True:
invertible = ask(Q.invertible(A - B * D.I * C), assumptions)
if invertible is not None:
return invertible
return None
@InvertiblePredicate.register(BlockDiagMatrix)
def _(expr, assumptions):
if expr.rowblocksizes != expr.colblocksizes:
return None
return fuzzy_and([ask(Q.invertible(a), assumptions) for a in expr.diag])
# OrthogonalPredicate
@OrthogonalPredicate.register(MatMul)
def _(expr, assumptions):
factor, mmul = expr.as_coeff_mmul()
if (all(ask(Q.orthogonal(arg), assumptions) for arg in mmul.args) and
factor == 1):
return True
if any(ask(Q.invertible(arg), assumptions) is False
for arg in mmul.args):
return False
@OrthogonalPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if int_exp:
return ask(Q.orthogonal(base), assumptions)
return None
@OrthogonalPredicate.register(MatAdd)
def _(expr, assumptions):
if (len(expr.args) == 1 and
ask(Q.orthogonal(expr.args[0]), assumptions)):
return True
@OrthogonalPredicate.register(MatrixSymbol)
def _(expr, assumptions):
if (not expr.is_square or
ask(Q.invertible(expr), assumptions) is False):
return False
if Q.orthogonal(expr) in conjuncts(assumptions):
return True
@OrthogonalPredicate.register(Identity)
def _(expr, assumptions):
return True
@OrthogonalPredicate.register(ZeroMatrix)
def _(expr, assumptions):
return False
@OrthogonalPredicate.register_many(Inverse, Transpose)
def _(expr, assumptions):
return ask(Q.orthogonal(expr.arg), assumptions)
@OrthogonalPredicate.register(MatrixSlice)
def _(expr, assumptions):
if not expr.on_diag:
return None
else:
return ask(Q.orthogonal(expr.parent), assumptions)
@OrthogonalPredicate.register(Factorization)
def _(expr, assumptions):
return _Factorization(Q.orthogonal, expr, assumptions)
# UnitaryPredicate
@UnitaryPredicate.register(MatMul)
def _(expr, assumptions):
factor, mmul = expr.as_coeff_mmul()
if (all(ask(Q.unitary(arg), assumptions) for arg in mmul.args) and
abs(factor) == 1):
return True
if any(ask(Q.invertible(arg), assumptions) is False
for arg in mmul.args):
return False
@UnitaryPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if int_exp:
return ask(Q.unitary(base), assumptions)
return None
@UnitaryPredicate.register(MatrixSymbol)
def _(expr, assumptions):
if (not expr.is_square or
ask(Q.invertible(expr), assumptions) is False):
return False
if Q.unitary(expr) in conjuncts(assumptions):
return True
@UnitaryPredicate.register_many(Inverse, Transpose)
def _(expr, assumptions):
return ask(Q.unitary(expr.arg), assumptions)
@UnitaryPredicate.register(MatrixSlice)
def _(expr, assumptions):
if not expr.on_diag:
return None
else:
return ask(Q.unitary(expr.parent), assumptions)
@UnitaryPredicate.register_many(DFT, Identity)
def _(expr, assumptions):
return True
@UnitaryPredicate.register(ZeroMatrix)
def _(expr, assumptions):
return False
@UnitaryPredicate.register(Factorization)
def _(expr, assumptions):
return _Factorization(Q.unitary, expr, assumptions)
# FullRankPredicate
@FullRankPredicate.register(MatMul)
def _(expr, assumptions):
if all(ask(Q.fullrank(arg), assumptions) for arg in expr.args):
return True
@FullRankPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if int_exp and ask(~Q.negative(exp), assumptions):
return ask(Q.fullrank(base), assumptions)
return None
@FullRankPredicate.register(Identity)
def _(expr, assumptions):
return True
@FullRankPredicate.register(ZeroMatrix)
def _(expr, assumptions):
return False
@FullRankPredicate.register(OneMatrix)
def _(expr, assumptions):
return expr.shape[0] == 1 and expr.shape[1] == 1
@FullRankPredicate.register_many(Inverse, Transpose)
def _(expr, assumptions):
return ask(Q.fullrank(expr.arg), assumptions)
@FullRankPredicate.register(MatrixSlice)
def _(expr, assumptions):
if ask(Q.orthogonal(expr.parent), assumptions):
return True
# PositiveDefinitePredicate
@PositiveDefinitePredicate.register(MatMul)
def _(expr, assumptions):
factor, mmul = expr.as_coeff_mmul()
if (all(ask(Q.positive_definite(arg), assumptions)
for arg in mmul.args) and factor > 0):
return True
if (len(mmul.args) >= 2
and mmul.args[0] == mmul.args[-1].T
and ask(Q.fullrank(mmul.args[0]), assumptions)):
return ask(Q.positive_definite(
MatMul(*mmul.args[1:-1])), assumptions)
@PositiveDefinitePredicate.register(MatPow)
def _(expr, assumptions):
# a power of a positive definite matrix is positive definite
if ask(Q.positive_definite(expr.args[0]), assumptions):
return True
@PositiveDefinitePredicate.register(MatAdd)
def _(expr, assumptions):
if all(ask(Q.positive_definite(arg), assumptions)
for arg in expr.args):
return True
@PositiveDefinitePredicate.register(MatrixSymbol)
def _(expr, assumptions):
if not expr.is_square:
return False
if Q.positive_definite(expr) in conjuncts(assumptions):
return True
@PositiveDefinitePredicate.register(Identity)
def _(expr, assumptions):
return True
@PositiveDefinitePredicate.register(ZeroMatrix)
def _(expr, assumptions):
return False
@PositiveDefinitePredicate.register(OneMatrix)
def _(expr, assumptions):
return expr.shape[0] == 1 and expr.shape[1] == 1
@PositiveDefinitePredicate.register_many(Inverse, Transpose)
def _(expr, assumptions):
return ask(Q.positive_definite(expr.arg), assumptions)
@PositiveDefinitePredicate.register(MatrixSlice)
def _(expr, assumptions):
if not expr.on_diag:
return None
else:
return ask(Q.positive_definite(expr.parent), assumptions)
# UpperTriangularPredicate
@UpperTriangularPredicate.register(MatMul)
def _(expr, assumptions):
factor, matrices = expr.as_coeff_matrices()
if all(ask(Q.upper_triangular(m), assumptions) for m in matrices):
return True
@UpperTriangularPredicate.register(MatAdd)
def _(expr, assumptions):
if all(ask(Q.upper_triangular(arg), assumptions) for arg in expr.args):
return True
@UpperTriangularPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
non_negative = ask(~Q.negative(exp), assumptions)
if (non_negative or non_negative == False
and ask(Q.invertible(base), assumptions)):
return ask(Q.upper_triangular(base), assumptions)
return None
@UpperTriangularPredicate.register(MatrixSymbol)
def _(expr, assumptions):
if Q.upper_triangular(expr) in conjuncts(assumptions):
return True
@UpperTriangularPredicate.register_many(Identity, ZeroMatrix)
def _(expr, assumptions):
return True
@UpperTriangularPredicate.register(OneMatrix)
def _(expr, assumptions):
return expr.shape[0] == 1 and expr.shape[1] == 1
@UpperTriangularPredicate.register(Transpose)
def _(expr, assumptions):
return ask(Q.lower_triangular(expr.arg), assumptions)
@UpperTriangularPredicate.register(Inverse)
def _(expr, assumptions):
return ask(Q.upper_triangular(expr.arg), assumptions)
@UpperTriangularPredicate.register(MatrixSlice)
def _(expr, assumptions):
if not expr.on_diag:
return None
else:
return ask(Q.upper_triangular(expr.parent), assumptions)
@UpperTriangularPredicate.register(Factorization)
def _(expr, assumptions):
return _Factorization(Q.upper_triangular, expr, assumptions)
# LowerTriangularPredicate
@LowerTriangularPredicate.register(MatMul)
def _(expr, assumptions):
factor, matrices = expr.as_coeff_matrices()
if all(ask(Q.lower_triangular(m), assumptions) for m in matrices):
return True
@LowerTriangularPredicate.register(MatAdd)
def _(expr, assumptions):
if all(ask(Q.lower_triangular(arg), assumptions) for arg in expr.args):
return True
@LowerTriangularPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
non_negative = ask(~Q.negative(exp), assumptions)
if (non_negative or non_negative == False
and ask(Q.invertible(base), assumptions)):
return ask(Q.lower_triangular(base), assumptions)
return None
@LowerTriangularPredicate.register(MatrixSymbol)
def _(expr, assumptions):
if Q.lower_triangular(expr) in conjuncts(assumptions):
return True
@LowerTriangularPredicate.register_many(Identity, ZeroMatrix)
def _(expr, assumptions):
return True
@LowerTriangularPredicate.register(OneMatrix)
def _(expr, assumptions):
return expr.shape[0] == 1 and expr.shape[1] == 1
@LowerTriangularPredicate.register(Transpose)
def _(expr, assumptions):
return ask(Q.upper_triangular(expr.arg), assumptions)
@LowerTriangularPredicate.register(Inverse)
def _(expr, assumptions):
return ask(Q.lower_triangular(expr.arg), assumptions)
@LowerTriangularPredicate.register(MatrixSlice)
def _(expr, assumptions):
if not expr.on_diag:
return None
else:
return ask(Q.lower_triangular(expr.parent), assumptions)
@LowerTriangularPredicate.register(Factorization)
def _(expr, assumptions):
return _Factorization(Q.lower_triangular, expr, assumptions)
# DiagonalPredicate
def _is_empty_or_1x1(expr):
return expr.shape in ((0, 0), (1, 1))
@DiagonalPredicate.register(MatMul)
def _(expr, assumptions):
if _is_empty_or_1x1(expr):
return True
factor, matrices = expr.as_coeff_matrices()
if all(ask(Q.diagonal(m), assumptions) for m in matrices):
return True
@DiagonalPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
non_negative = ask(~Q.negative(exp), assumptions)
if (non_negative or non_negative == False
and ask(Q.invertible(base), assumptions)):
return ask(Q.diagonal(base), assumptions)
return None
@DiagonalPredicate.register(MatAdd)
def _(expr, assumptions):
if all(ask(Q.diagonal(arg), assumptions) for arg in expr.args):
return True
@DiagonalPredicate.register(MatrixSymbol)
def _(expr, assumptions):
if _is_empty_or_1x1(expr):
return True
if Q.diagonal(expr) in conjuncts(assumptions):
return True
@DiagonalPredicate.register(OneMatrix)
def _(expr, assumptions):
return expr.shape[0] == 1 and expr.shape[1] == 1
@DiagonalPredicate.register_many(Inverse, Transpose)
def _(expr, assumptions):
return ask(Q.diagonal(expr.arg), assumptions)
@DiagonalPredicate.register(MatrixSlice)
def _(expr, assumptions):
if _is_empty_or_1x1(expr):
return True
if not expr.on_diag:
return None
else:
return ask(Q.diagonal(expr.parent), assumptions)
@DiagonalPredicate.register_many(DiagonalMatrix, DiagMatrix, Identity, ZeroMatrix)
def _(expr, assumptions):
return True
@DiagonalPredicate.register(Factorization)
def _(expr, assumptions):
return _Factorization(Q.diagonal, expr, assumptions)
# IntegerElementsPredicate
def BM_elements(predicate, expr, assumptions):
""" Block Matrix elements. """
return all(ask(predicate(b), assumptions) for b in expr.blocks)
def MS_elements(predicate, expr, assumptions):
""" Matrix Slice elements. """
return ask(predicate(expr.parent), assumptions)
def MatMul_elements(matrix_predicate, scalar_predicate, expr, assumptions):
d = sift(expr.args, lambda x: isinstance(x, MatrixExpr))
factors, matrices = d[False], d[True]
return fuzzy_and([
test_closed_group(Basic(*factors), assumptions, scalar_predicate),
test_closed_group(Basic(*matrices), assumptions, matrix_predicate)])
@IntegerElementsPredicate.register_many(Determinant, HadamardProduct, MatAdd,
Trace, Transpose)
def _(expr, assumptions):
return test_closed_group(expr, assumptions, Q.integer_elements)
@IntegerElementsPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
if exp.is_negative == False:
return ask(Q.integer_elements(base), assumptions)
return None
@IntegerElementsPredicate.register_many(Identity, OneMatrix, ZeroMatrix)
def _(expr, assumptions):
return True
@IntegerElementsPredicate.register(MatMul)
def _(expr, assumptions):
return MatMul_elements(Q.integer_elements, Q.integer, expr, assumptions)
@IntegerElementsPredicate.register(MatrixSlice)
def _(expr, assumptions):
return MS_elements(Q.integer_elements, expr, assumptions)
@IntegerElementsPredicate.register(BlockMatrix)
def _(expr, assumptions):
return BM_elements(Q.integer_elements, expr, assumptions)
# RealElementsPredicate
@RealElementsPredicate.register_many(Determinant, Factorization, HadamardProduct,
MatAdd, Trace, Transpose)
def _(expr, assumptions):
return test_closed_group(expr, assumptions, Q.real_elements)
@RealElementsPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
non_negative = ask(~Q.negative(exp), assumptions)
if (non_negative or non_negative == False
and ask(Q.invertible(base), assumptions)):
return ask(Q.real_elements(base), assumptions)
return None
@RealElementsPredicate.register(MatMul)
def _(expr, assumptions):
return MatMul_elements(Q.real_elements, Q.real, expr, assumptions)
@RealElementsPredicate.register(MatrixSlice)
def _(expr, assumptions):
return MS_elements(Q.real_elements, expr, assumptions)
@RealElementsPredicate.register(BlockMatrix)
def _(expr, assumptions):
return BM_elements(Q.real_elements, expr, assumptions)
# ComplexElementsPredicate
@ComplexElementsPredicate.register_many(Determinant, Factorization, HadamardProduct,
Inverse, MatAdd, Trace, Transpose)
def _(expr, assumptions):
return test_closed_group(expr, assumptions, Q.complex_elements)
@ComplexElementsPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
non_negative = ask(~Q.negative(exp), assumptions)
if (non_negative or non_negative == False
and ask(Q.invertible(base), assumptions)):
return ask(Q.complex_elements(base), assumptions)
return None
@ComplexElementsPredicate.register(MatMul)
def _(expr, assumptions):
return MatMul_elements(Q.complex_elements, Q.complex, expr, assumptions)
@ComplexElementsPredicate.register(MatrixSlice)
def _(expr, assumptions):
return MS_elements(Q.complex_elements, expr, assumptions)
@ComplexElementsPredicate.register(BlockMatrix)
def _(expr, assumptions):
return BM_elements(Q.complex_elements, expr, assumptions)
@ComplexElementsPredicate.register(DFT)
def _(expr, assumptions):
return True